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Abstract
We present a maximum margin framework that clusters data using latent vari-
ables. Using latent representations enables our framework to model unobserved
information embedded in the data. We implement our idea by large margin learn-
ing, and develop an alternating descent algorithm to effectively solve the resultant
non-convex optimization problem. We instantiate our latent maximum margin
clustering framework with tag-based video clustering tasks, where each video is
represented by a latent tag model describing the presence or absence of video tags.
Experimental results obtained on three standard datasets show that the proposed
method outperforms non-latent maximum margin clustering as well as conven-
tional clustering approaches.

1 Introduction

Clustering is a major task in machine learning and has been extensively studied over decades of
research [11]. Given a set of observations, clustering aims to group data instances of similar struc-
tures or patterns together. Popular clustering approaches include the k-means algorithm [7], mixture
models [22], normalized cuts [27], and spectral clustering [18]. Recent progress has been made
using maximum margin clustering (MMC) [32], which extends the supervised large margin theory
(e.g. SVM) to the unsupervised scenario. MMC performs clustering by simultaneously optimiz-
ing cluster-specific models and instance-specific labeling assignments, and often generates better
performance than conventional methods [33, 29, 37, 38, 16, 6].

Modeling data with latent variables is common in many applications. Latent variables are often
defined to have intuitive meaning, and are used to capture unobserved semantics in the data. As
compared with ordinary linear models, latent variable models feature the ability to exploit a richer
representation of the space of instances. Thus, they often achieve superior performance in practice.
In computer vision, this is best exemplified by the success of deformable part models (DPMs) [5]
for object detection. DPMs enhance the representation of an object class by capturing viewpoint and
pose variations. They utilize a root template describing the entire object appearance and several part
templates. Latent variables are used to capture deformations and appearance variations of the root
template and parts. DPMs perform object detection via search for the best locations of the root and
part templates.

Latent variable models are often coupled with supervised learning to learn models incorporating the
unobserved variables. For example, DPMs are learned in a latent SVM framework [5] for object
detection; similar models have been shown to improve human action recognition [31]. A host of
other applications of latent SVMs have obtained state-of-the-art performance in computer vision.
Motivated by their success in supervised learning, we believe latent variable models can also help
in unsupervised clustering – data instances with similar latent representations should be grouped
together in one cluster.

As the latent variables are unobserved in the original data, we need a learning framework to handle
this latent knowledge. To implement this idea, we develop a novel clustering algorithm based on
MMC that incorporates latent variables – we call this latent maximum margin clustering (LMMC).
The LMMC algorithm results in a non-convex optimization problem, for which we introduce an
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iterative alternating descent algorithm. Each iteration involves three steps: inferring latent variables
for each sample point, optimizing cluster assignments, and updating cluster model parameters.

To evaluate the efficacy of this clustering algorithm, we instantiate LMMC for tag-based video
clustering, where each video is modeled with latent variables controlling the presence or absence
of a set of descriptive tags. We conduct experiments on three standard datasets: TRECVID MED
11 [19], KTH Actions [26] and UCF Sports [23], and show that LMMC outperforms non-latent
MMC and conventional clustering methods.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 formulates
the LMMC framework in detail. We describe tag-based video clustering in Section 4, followed by
experimental results reported in Section 5. Finally, Section 6 concludes this paper.

2 Related Work

Latent variable models. There has been much work in recent years using latent variable mod-
els. The definition of latent variables are usually task-dependent. Here we focus on the learning
part only. Andrews et al. [1] propose multiple-instance SVM to learn latent variables in positive
bags. Felzenszwalb et al. [5] formulate latent SVM by extending binary linear SVM with latent
variables. Yu and Joachims [36] handle structural outputs with latent structural SVM. This model
is also known as maximum margin hidden conditional random fields (MMHCRF) [31]. Kumar et
al. [14] propose self-paced learning, an optimization strategy that focuses on simple models first.
Yang et al. [35] kernelize latent SVM for better performance. All of this work demonstrates the
power of max-margin latent variable models for supervised learning; our framework conducts unsu-
pervised clustering while modeling data with latent variables.

Maximum margin clustering. MMC was first proposed by Xu et al. [32] to extend supervised large
margin methods to unsupervised clustering. Different from the supervised case, where the optimiza-
tion is convex, MMC results in non-convex problems. To solve it, Xu et al. [32] and Valizadegan
and Rong [29] reformulate the original problem as a semi-definite programming (SDP) problem.
Zhang et al. [37] employ alternating optimization – finding labels and optimizing a support vector
regression (SVR). Li et al. [16] iteratively generate the most violated labels, and combine them via
multiple kernel learning. Note that the above methods can only solve binary-cluster clustering prob-
lems. To handle the multi-cluster case, Xu and Schuurmans [33] extends the SDP method in [32].
Zhao et al. [38] propose a cutting-plane method which uses the constrained convex-concave proce-
dure (CCCP) to relax the non-convex constraint. Gopalan and Sankaranarayanan [6] examine data
projections to identify the maximum margin. Our framework deals with multi-cluster clustering,
and we model data instances with latent variables to exploit rich representations. It is also worth
mentioning that MMC leads naturally to the semi-supervised SVM framework [12] by assuming a
training set of labeled instances [32, 33]. Using the same idea, we could extend LMMC to semi-
supervised learning.

MMC has also shown its success in various computer vision applications. For example, Zhang
et al. [37] conduct MMC based image segmentation. Farhadi and Tabrizi [4] find different view
points of human activities via MMC. Wang and Cao [30] incorporate MMC to discover geographical
clusters of beach images. Hoai and Zisserman [8] form a joint framework of maximum margin
classification and clustering to improve sub-categorization.

Tag-based video analysis. Tagging videos with relevant concepts or attributes is common in video
analysis. Qi et al. [20] predict multiple correlative tags in a structural SVM framework. Yang and
Toderici [34] exploit latent sub-categories of tags in large-scale videos. The obtained tags can assist
in recognition. For example, Liu et al. [17] use semantic attributes (e.g. up-down motion, torso
motion, twist) to recognize human actions (e.g. walking, hand clapping). Izadinia and Shah [10]
model low-level event tags (e.g. people dancing, animal eating) as latent variables to recognize
complex video events (e.g. wedding ceremony, grooming animal).

Instead of supervised recognition of tags or video categories, we focus on unsupervised tag-based
video clustering. In fact, recently research collects various sources of tags for video clustering.
Schroff et al. [25] cluster videos by the capturing locations. Hsu et al. [9] build hierarchical cluster-
ing using user-contributed comments. Our paper uses latent tag models, and our LMMC framework
is general enough to handle various types of tags.
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3 Latent Maximum Margin Clustering
As stated above, modeling data with latent variables can be beneficial in a variety of supervised
applications. For unsupervised clustering, we believe it also helps to group data instances based on
latent representations. To implement this idea, we propose the LMMC framework.

LMMC models instances with latent variables. When fitting an instance to a cluster, we find the
optimal values for latent variables and use the corresponding latent representation of the instance.
To best fit different clusters, an instance is allowed to flexibly take different latent variable values
when being compared to different clusters. This enables LMMC to explore a rich latent space when
forming clusters. Note that in conventional clustering algorithms, an instance is usually restricted to
have the same representation in all clusters. Furthermore, as the latent variables are unobserved in
the original data, we need a learning framework to exploit this latent knowledge. Here we develop a
large margin learning framework based on MMC, and learn a discriminative model for each cluster.
The resultant LMMC optimization is non-convex, and we design an alternating descent algorithm to
approximate the solution. Next we will briefly introduce MMC in Section 3.1, followed by detailed
descriptions of the LMMC framework and optimization respectively in Sections 3.2 and 3.3.

3.1 Maximum Margin Clustering

MMC [32, 37, 38] extends the maximum margin principle popularized by supervised SVMs to
unsupervised clustering, where the input instances are unlabeled. The idea of MMC is to find a
labeling so that the margin obtained would be maximal over all possible labelings. Suppose there
are N instances {xi}Ni=1 to be clustered into K clusters, MMC is formulated as follows [33, 38]:

min
W,Y,ξ≥0

1

2

K∑
t=1

||wt||2 +
C

K

N∑
i=1

K∑
r=1

ξir (1)

s.t.

K∑
t=1

yitw
>
t xi −w>r xi ≥ 1− yir − ξir, ∀i, r

yit ∈ {0, 1}, ∀i, t
K∑
t=1

yit = 1, ∀i

whereW = {wt}Kt=1 are the linear model parameters for each cluster, ξ = {ξir} (i ∈ {1, . . . , N},
t ∈ {1, . . . ,K}) are the slack variables to allow soft margin, and C is a trade-off parameter. We
denote the labeling assignment by Y = {yit} (i ∈ {1, . . . , N}, t ∈ {1, . . . ,K}), where yit = 1
indicates that the instance xi is clustered into the t-th cluster, and yit = 0 otherwise. By convention,
we require that each instance is assigned to one and only one cluster, i.e. the last constraint in Eq. 1.
Moreover, the first constraint in Eq. 1 enforces a large margin between clusters by constraining that
the score of xi to the assigned cluster is sufficiently larger than the score of xi to any other clusters.
Note that MMC is an unsupervised clustering method, which jointly estimates the model parameters
W and finds the best labeling Y .

Enforcing balanced clusters. Unfortunately, solving Eq. 1 could end up with trivial solutions
where all instances are simply assigned to the same cluster, and we obtain an unbounded margin. To
address this problem, we add cluster balance constraints to Eq. 1 that require Y to satisfy

L ≤
N∑
i=1

yit ≤ U, ∀t (2)

where L and U are the lower and upper bounds controlling the size of a cluster. Note that we explic-
itly enforce cluster balance using a hard constraint on the cluster sizes. This is different from [38], a
representative multi-cluster MMC method, where the cluster balance constraints are implicitly im-
posed on the accumulated model scores (i.e.

∑N
i=1 w

>
t xi). We found empirically that explicitly

enforcing balanced cluster sizes led to better results.

3.2 Latent Maximum Margin Clustering

We now extend MMC to include latent variables. The latent variable of an instance is cluster-
specific. Formally, we denote h as the latent variable of an instance x associated to a cluster param-
eterized by w. Following the latent SVM formulation [5, 36, 31], scoring x w.r.t. w is to solve an
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inference problem of the form:
fw(x) = max

h
w>Φ(x,h) (3)

where Φ(x,h) is the feature vector defined for the pair of (x,h). To simplify the notation, we
assume the latent variable h takes its value from a discrete set of labels. However, our formulation
can be easily generalized to handle more complex latent variables (e.g. graph structures [36, 31]).

To incorporate the latent variable models into clustering, we replace the linear model w>x in E-
q. 1 by the latent variable model fw(x). We call the resultant framework latent maximum margin
clustering (LMMC). LMMC finds clusters via the following optimization:

min
W,Y,ξ≥0

1

2

K∑
t=1

||wt||2 +
C

K

N∑
i=1

K∑
r=1

ξir (4)

s.t.

K∑
t=1

yitfwt(xi)− fwr (xi) ≥ 1− yir − ξir, ∀i, r

yit ∈ {0, 1}, ∀i, t
K∑
t=1

yit = 1, ∀i L ≤
N∑
i=1

yit ≤ U, ∀t

We adopt the notation Y from the MMC formulation to denote the labeling assignment. Similar to
MMC, the first constraint in Eq. 4 enforces the large margin criterion where the score of fitting xi
to the assigned cluster is marginally larger than the score of fitting xi to any other clusters. Cluster
balance is enforced by the last constraint in Eq. 4. Note that LMMC jointly optimizes the model
parametersW and finds the best labeling assignment Y , while inferring the optimal latent variables.

3.3 Optimization

It is easy to verify that the optimization problem described in Eq. 4 is non-convex due to the
optimization over the labeling assignment variables Y and the latent variables H = {hit} (i ∈
{1, . . . , N}, t ∈ {1, . . . ,K}). To solve it, we first eliminate the slack variables ξ, and rewrite Eq. 4
equivalently as:

min
W

1

2

K∑
t=1

||wt||2 +
C

K
R(W) (5)

where R(W) is the risk function defined by:

R(W) = min
Y

N∑
i=1

K∑
r=1

max
(
0, 1− yir + fwr

(xi)−
K∑
t=1

yitfwt
(xi)

)
(6)

s.t. yit ∈ {0, 1}, ∀i, t
K∑
t=1

yit = 1, ∀i L ≤
N∑
i=1

yit ≤ U, ∀t

Note that Eq. 5 minimizes over the model parameters W , and Eq. 6 minimizes over the labeling
assignment variables Y while inferring the latent variables H. We develop an alternating descent
algorithm to find an approximate solution. In each iteration, we first evaluate the risk functionR(W)
given the current model parameters W , and then update W with the obtained risk value. Next we
describe each step in detail.

Risk evaluation: The first step of learning is to compute the risk function R(W) with the model
parametersW fixed. We first infer the latent variablesH and then optimize the labeling assignment
Y . According to Eq. 3, the latent variable hit of an instance xi associated to cluster t can be obtained
via: argmaxhit

w>t Φ(xi,hit). Note that the inference problem is task-dependent. For our latent tag
model, we present an efficient inference method in Section 4.

After obtaining the latent variables H, we optimize the labeling assignment Y from Eq. 6. Intu-
itively, this is to minimize the total risk of labeling all instances yet maintaining the cluster balance
constraints. We reformulate Eq. 6 as an integer linear programming (ILP) problem by introducing a
variable ψit to capture the risk of assigning an instance xi to a cluster t. The ILP can be written as:

R(W) = min
Y

N∑
i=1

K∑
t=1

ψityit s.t. yit ∈ {0, 1},∀i, t
K∑
t=1

yit = 1,∀i L ≤
N∑
i=1

yit ≤ U,∀t (7)
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Cluster: feeding animal Cluster: board trick

vi
de

o

T : board car dog food grass man snow tree · · · board car dog food grass man snow tree · · ·
h: 0 0 1 1 1 1 0 1 · · · 1 0 0 0 1 1 0 0 · · ·

Figure 1: Two videos represented by the latent tag model. Please refer to the text for details about T
and h. Note that the cluster labels (i.e. “feeding animal”, “board trick”) are unknown beforehand.
They are added for a better understanding of the video content and the latent tag representations.

where ψit =
∑K
r=1,r 6=t max(0, 1 + fwr (xi) − fwt(xi)). This captures the total “mis-clustering”

penalties - suppose that we regard t as the “ground truth” cluster label for an instance xi, then ψit
measures the sum of hinge losses for all incorrect predictions r (r 6= t), which is consistent with
the supervised multi-class SVM at a higher level [2]. Eq. 7 is a standard ILP problem with N ×K
variables and N + K constraints. We use the GNU Linear Programming Kit (GLPK) to obtain an
approximate solution to this problem.

UpdatingW: The next step of learning is the optimization over the model parametersW (Eq. 5).
The learning problem is non-convex and we use the the non-convex bundle optimization solver
in [3]. In a nutshell, this method builds a piecewise quadratic approximation to the objective function
of Eq. 5 by iteratively adding a linear cutting plane at the current optimum and updating the optimum.
Now the key issue is to compute the subgradient ∂wt

fwt
(xi) for a particular wt. Let h∗it be the

optimal solution to the inference problem: h∗it = argmaxhit
w>t Φ(xi,hit). Then the subgradient

can be calculated as ∂wtfwt(xi) = Φ(xi,h
∗
it). Using the subgradient ∂wtfwt(xi), we optimize

Eq. 5 by the algorithm in [3].

4 Tag-Based Video Clustering

In this section, we introduce an application of LMMC: tag-based video clustering. Our goal is
to jointly learn video clusters and tags in a single framework. We treat tags of a video as latent
variables and capture the correlations between clusters and tags. Intuitively, videos with a similar
set of tags should be assigned to the same cluster. We assume a separate training dataset consisting of
videos with ground-truth tag labels exists, from which we train tag detectors independently. During
clustering, we are given a set of new videos without the ground-truth tag labels, and our goal is to
assign cluster labels to these videos.

We employ a latent tag model to represent videos. We are particularly interested in tags which
describe different aspects of videos. For example, a video from the cluster “feeding animal” (see
Figure 1) may be annotated with “dog”, “food”, “man”, etc. Assume we collect all the tags in a
set T . For a video being assigned to a particular cluster, we know it could have a number of tags
from T describing its visual content related to the cluster. However, we do not know which tags are
present in the video. To address this problem, we associate latent variables to the video to denote
the presence and absence of tags.

Formally, given a cluster parameterized by w, we associate a latent variable h to a video x, where
h = {ht}t∈T and ht ∈ {0, 1} is a binary variable denoting the presence/absence of each tag t.
ht = 1 means x has the tag t, while ht = 0 means x does not have the tag t. Figure 1 shows the
latent tag representations of two sample videos. We score the video x according to the model in
Eq. 3: fw(x) = maxh w>Φ(x,h), where the potential function w>Φ(x,h) is defined as follows:

w>Φ(x,h) =
1

|T |
∑
t∈T

ht · ω>t φt(x) (8)

This potential function measures the compatibility between the video x and tag t associated with
the current cluster. Note that w = {ωt}t∈T are the cluster-specific model parameters, and Φ =
{ht · φt(x)}t∈T is the feature vector depending on the video x and its tags h. Here φt(x) ∈ Rd is
the feature vector extracted from the video x, and the parameter ωt is a template for tag t. In our
current implementation, instead of keeping φt(x) as a high dimensional vector of video features, we
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simply represent it as a scalar score of detecting tag t on x by a pre-trained binary tag detector. To
learn biases between different clusters, we append a constant 1 to make φt(x) two-dimensional.

Now we describe how to infer the latent variable h∗ = argmaxh w>Φ(x,h). As there is no de-
pendency between tags, we can infer each latent variable separately. According to Eq. 8, the term
corresponding to tag t is ht ·ω>t φt(x). Considering that ht is binary, we set ht to 1 if ω>t φt(x) > 0;
otherwise, we set ht to 0.

5 Experiments

We evaluate the performance of our method on three standard video datasets: TRECVID MED
11 [19], KTH Actions [26] and UCF Sports [23]. We briefly describe our experimental setup before
reporting the experimental results in Section 5.1.

TRECVID MED 11 dataset [19]: This dataset contains web videos collected by the Linguistic
Data Consortium from various web video hosting sites. There are 15 complex event categories
including “board trick”, “feeding animal”, “landing fish”, “wedding ceremony”, “woodworking
project”, “birthday party”, “changing tire”, “flash mob”, “getting vehicle unstuck”, “grooming
animal”, “making sandwich”, “parade”, “parkour”, “repairing appliance”, and “sewing project”.
TRECVID MED 11 has three data collections: Event-Kit, DEV-T and DEV-O. DEV-T and DEV-O
are dominated by videos of the null category, i.e. background videos that do not contain the events
of interest. Thus, we use the Event-Kit data collection in the experiments. By removing 13 short
videos that contain no visual content, we finally have a total of 2,379 videos for clustering.

We use tags that were generated in Vahdat and Mori [28] for the TRECVID MED 11 dataset. Specif-
ically, this dataset includes “judgment files” that contain a short one-sentence description for each
video. A sample description is: “A man and a little boy lie on the ground after the boy has fallen
off his bike”. This sentence provides us with information about presence of objects such as “man”,
“boy”, “ground” and “bike”, which could be used as tags. In [28], text analysis tools are employed
to extract binary tags based on frequent nouns in the judgment files. Examples of 74 frequent tags
used in this work are: “music”, “person”, “food”, “kitchen”, “bird”, “bike”, “car”, “street”, “boat”,
“water”, etc. The complete list of tags are available on our website.

To train tag detectors, we use the DEV-T and DEV-O videos that belong to the 15 event categories.
There are 1675 videos in total. We extract HOG3D descriptors [13] and form a 1,000 word code-
book. Each video is then represented by a 1,000-dimensional feature vector. We train a linear SVM
for each tag, and predict the detection scores on the Event-Kit videos. To remove biases between tag
detectors, we normalize the detection scores by z-score normalization. Note that we make no use of
the ground-truth tags on the Event-Kit videos that are to be clustered.

KTH Actions dataset [26]: This dataset contains a total of 599 videos of 6 human actions: “walk-
ing”, “jogging”, “running”, “boxing”, “hand waving”, and “hand clapping”. Our experiments use
all the videos for clustering.

We use Action Bank [24] to generate tags for this dataset. Action Bank has 205 template actions
with various action semantics and viewpoints. Randomly selected examples of template actions
are: “hula1”, “ski5”, “clap3”, “fence2”, “violin6”, etc. In our experiments, we treat the template
actions as tags. Specifically, on each video and for each template action, we use the set of Action
Bank action detection scores collected at different spatiotemporal scales and correlation volumes.
We perform max-pooling on the scores to obtain the corresponding tag detection score. Again, for
each tag, we normalize the detection scores by z-score normalization.

UCF Sports dataset [23]: This dataset consists of 140 videos from 10 action classes: “diving”, “golf
swinging”, “kicking”, “lifting”, “horse riding”, “running”, “skating”, “swinging (on the pommel
horse)”, “swinging (at the high bar)”, and “walking”. We use all the videos for clustering. The tags
and tag detection scores are generated from Action Bank, in the same way as KTH Actions.

Baselines: To evaluate the efficacy of LMMC, we implement three conventional clustering methods
for comparison, including the k-means algorithm (KM), normalized cut (NC) [27], and spectral
clustering (SC) [18]. For NC, the implementation and parameter settings are the same as [27],
which uses a Gaussian similarity function with all the instances considered as neighbors. For SC,
we use a 5-nearest neighborhood graph and set the width of the Gaussian similarity function as the
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TRECVID MED 11 KTH Actions UCF Sports
PUR NMI RI FM PUR NMI RI FM PUR NMI RI FM

LMMC 39.0 28.7 89.5 22.1 92.5 87.0 95.8 87.2 76.4 71.2 92.0 60.0
MMC 36.0 26.6 89.3 20.3 91.3 86.5 95.2 85.5 63.6 62.2 89.2 46.1

SC 28.6 23.6 87.1 20.3 61.0 60.8 75.6 58.2 69.9 70.8 90.6 58.1
KM 27.0 23.8 85.9 20.4 64.8 60.7 84.0 60.6 63.1 66.2 87.9 58.7
NC 12.9 5.7 31.6 12.7 48.0 33.9 72.9 35.1 60.7 55.8 83.4 41.8

Table 1: Clustering results (in %) on the three datasets. The figures boldfaced are the best perfor-
mance among all the compared methods.

average distance over all the 5-nearest neighbors. Note that these three methods do not use latent
variable models. Therefore, for a fair comparison with LMMC, they are directly performed on the
data where each video is represented by a vector of tag detection scores. We have also tried KM,
NC and SC on the 1,000-dimensional HOG3D features. However, the performance is worse and is
not reported here. Furthermore, to mitigate the effect of randomness, KM, NC and SC are run 10
times with different initial seeds and the average results are recorded in the experiments.

In order to show the benefits of incorporating latent variables, we further develop a baseline called
MMC by replacing the latent variable model fw(x) in Eq. 4 with a linear model w>x. This is equiv-
alent to running an ordinary maximum margin clustering algorithm on the video data represented by
tag detection scores. For a fair comparison, we use the same solver for learning MMC and LMMC.
The trade-off parameter C in Eq. 4 is selected as the best from the range {101, 102, 103}. The lower
bound and upper bounds of the cluster-balance constraint (i.e. L and U in Eq. 4) are set as 0.9NK
and 1.1NK respectively to enforce balanced clusters.

Performance measures: Following the convention of maximum margin clustering [32, 33, 29,
37, 38, 16, 6], we set the number of clusters to be the ground-truth number of classes for all the
compared methods. The clustering quality is evaluated by four standard measurements including
purity (PUR) [32], normalized mutual information (NMI) [15], Rand index (RI) [21] and balanced
F-measure (FM). They are employed to assess different aspects of a given clustering: PUR mea-
sures the accuracy of the dominating class in each cluster; NMI is from the information-theoretic
perspective and calculates the mutual dependence of the predicted clustering and the ground-truth
partitions; RI evaluates true positives within clusters and true negatives between clusters; and FM
considers both precision and recall. The higher the four measures, the better the performance.

5.1 Results

The clustering results are listed in Table 1. It shows that LMMC consistently outperforms the MMC
baseline and conventional clustering methods on all three datasets. Specifically, by incorporating
latent variables, LMMC improves the MMC baseline by 3% on TRECVID MED 11, 1% on KTH
Actions, and 13% on UCF Sports respectively, in terms of PUR. This demonstrates that learning the
latent presence and absence of tags can exploit rich representations of videos, and boost clustering
performance. Moreover, LMMC performs better than the three conventional methods, SC, KM and
NC, showing the efficacy of the proposed LMMC framework for unsupervised data clustering.

Note that MMC runs on the same non-latent representation as the three conventional methods, SC,
KM and NC. However, MMC outperforms them on the two largest datasets, TRECVID MED 11
and KTH Actions, and is comparable with them on UCF Sports. This provides evidence for the
effectiveness of maximum margin clustering as well as the proposed alternating descent algorithm
for optimizing the non-convex objective.

Visualization: We select four clusters from TRECVID MED 11, and visualize the results in Fig-
ure 2. Please refer to the caption for more details.

6 Conclusion

We have presented a latent maximum margin framework for unsupervised clustering. By repre-
senting instances with latent variables, our method features the ability to exploit the unobserved
information embedded in data. We formulate our framework by large margin learning, and an alter-
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Cluster: woodworking project Cluster: birthday party

4 4
Tags: piece, wood, machine, lady, indoors, man,
kitchen, baby

Tags: party, birthday, restaurant, couple, wedding
ceremony, wedding, ceremony, indoors

4 4
Tags: piece, man, wood, baby, hand, machine, la-
dy, kitchen

Tags: birthday, party, restaurant, family, child,
wedding ceremony, wedding, couple

4 4
Tags: wood, piece, baby, indoors, hand, man, lady,
bike

Tags: party, birthday, restaurant, child, family,
wedding ceremony, chicken, couple

Cluster: parade Cluster: landing fish

8 8
Tags: city, day, year, Chinese, Christmas, people,
lot, group

Tags: fish, fishing, boat, man, beach, line, water,
woman

4 4
Tags: day, street, lot, Chinese, year, line, Christ-
mas, dance

Tags: boat, beach, fish, man, men, group, water,
woman

4 4
Tags: street, day, lot, Chinese, line, year, dancing,
dance

Tags: fish, beach, boat, men, man, chicken, truck,
move

Figure 2: Four sample clusters from TRECVID MED 11. We label each cluster by the dominating
video class, e.g. “woodworking project”, “parade”, and visualize the top-3 scored videos. A “4”
sign indicates that the video label is consistent with the cluster label; otherwise, a “8” sign is used.
The two “mis-clustered” videos are on “parkour” (left) and “feeding animal” (right). Below each
video, we show the top eight inferred tags sorted by the potential calculated from Eq. 8.

nating descent algorithm is developed to solve the resultant non-convex objective. We instantiate our
framework with tag-based video clustering, where each video is represented by a latent tag model
with latent presence and absence of video tags. Our experiments conducted on three standard video
datasets validate the efficacy of the proposed framework. We believe our solution is general enough
to be applied in other applications with latent representations, e.g. video clustering with latent key
segments, image clustering with latent region-of-interest, etc. It would also be interesting to extend
our framework to semi-supervised learning by assuming a training set of labeled instances.
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