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Abstract. We present a novel algorithm for weakly supervised action classifica-
tion in videos. We assume we are given training videos annotated only with action
class labels. We learn a model that can classify unseen test videos, as well as lo-
calize a region of interest in the video that captures the discriminative essence
of the action class. A novel Similarity Constrained Latent Support Vector Ma-
chine model is developed to operationalize this goal. This model specifies that
videos should be classified correctly, and that the latent regions of interest chosen
should be coherent over videos of an action class. The resulting learning problem
is challenging, and we show how dual decomposition can be employed to render
it tractable. Experimental results demonstrate the efficacy of the method.

1 Introduction
Max-margin parameter learning for latent variable models is a popular approach in ob-
ject and action recognition. The Latent SVM formalism has been successfully applied
for many tasks including object detection, action recognition, and human pose estima-
tion (e.g. [1–4]). One reason for their success is that they allow for weak supervision
of latent parts or subregions within an element to be recognized. For instance, in action
recognition from video data, a weakly supervised method might only specify the action
class label of a training video, rather than providing manually labeled localization or
region of interest data. The latent SVM can model the localization of the action within
the video, but does not require its annotation for learning.

However, the performance of these methods often depends on a good initializa-
tion of the latent variables. In this paper we develop a novel learning framework that
considers pairwise similarity of the latent variables. Conceptually, enforcing pairwise
similarity of the latent variables allows for greater consistency of the latent variables
across the training set and is a natural way to define them.
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Fig. 1: Overview of our approach. First, for each video, we extract ROI candidates by
applying the objectness operator and mean shift clustering. Second, we employ the
Similarity Constrained Latent SVM learning framework to produce a corresponding
action classifier. Finally, we apply the learnt classifier to the test videos; as output, we
get the action label of the video as well as a specific ROI, which serves as the evidence
of the action.

In this paper, we present a novel extension of the popular Latent SVM [1]. This
new learning framework is subsequently applied to the task of action classification [5].
Specifically, given an input video, we would like to automatically determine whether a
particular action is taking place. Such a binary classification decision is useful for many
applications. However, it is often desirable to know more – for example where does
the action occur, or what video evidence is leading to the action classification decision.
We treat the spatio-temporal location of this video evidence as a latent variable in our
model.

Building systems that identify such discriminative evidence typically requires hand-
labeling of regions of interest on training videos. But this is an arduous, time-consuming,
and error-prone process. Deploying such methods to large datasets would be costly. Fur-
thermore, labeling where an action takes place, or what visual evidence is indicative of
a particular action is a non-trivial task. The spatio-temporal boundaries of an action are
difficult to define. Context, in the form of a background scene or relevant objects, also
often plays a crucial role in action classification, and should arguably be included in a
region of interest localization.

In this paper, we propose such a learning algorithm that produces a novel weakly su-
pervised method for action classification. Fig. 1 provides an overview of our approach.



Our work is inspired by two recent pieces of work in the vision literature. Lan et al. [2]
showed that reasoning about a latent region of interest can improve action recognition
results. However, that method requires supervision of the latent regions of interest on
the training data. We believe relaxing that assumption is an important direction for de-
ploying such methods more widely. Alexe et al. and Vezhnevets et al. [6, 7] have done
impressive work on automatic object localization and segmentation from weakly su-
pervised data. An “objectness” saliency operator is used to guide the weakly supervised
algorithm to localize objects of a consistent appearance. This line of work presents two-
stage processes in which the object and classification or segmentation are not learned
together. It is typically the case that improved performance results if these are learned
jointly. Here we build on this line of work, and present a unified discriminative frame-
work for jointly learning a classifier and localizing discriminative regions in video.

The main technical contribution of this paper is the development of the Similarity
Constrained Latent SVM, a formalism for this type of problem. At a high level, this
formalism allows for latent variables (action evidence locations or regions of interest)
similar to the popular latent support vector machine [1]. However, it adds the ability to
encourage consistency of the latent variables across all of the training data, considering
pairwise similarities of latent labels in a fashion similar to the Transductive SVM [8]
for semi-supervised learning1. A particular technical challenge in this formulation is
that a desire for consistency of latent regions across all training data leads to a more
complex learning procedure. We show that approximate inference based on dual de-
composition [9, 10] can be used to address this issue.

2 Previous Work

In this paper we develop a novel learning algorithm that is applied to the problem of
weakly supervised action classification with evidence localization. The aforementioned
work on objectness [6, 7] and joint localization and recognition [2] are most closely
related to the work presented here. More broadly, weakly supervised methods have
been explored in the vision literature, with a particular focus on object recognition.

Fergus et al. [11] develop weakly supervised methods for object class recognition.
A probabilistic part-based model is used, with supervision only at the object class level
rather than parts. The latent SVM object detector of Felzenszwalb et al. [1] is similar –
class level supervision is provided (e.g. an image window containing a person), without
part locations (e.g. the positions of body parts). Viola et al. [12] developed a similar
method for face detection, capturing the variability in ground-truth labeling of face lo-
cations in training data, using a boosting framework. Yao and Fei-Fei [3] and Yang et
al. [13] perform action recognition in images. Weak supervision of human body pose
and objects are considered in these frameworks. Laptev et al. [14] build datasets for ac-
tion recognition by considering surrogate movie script data, a form of weak supervision
about action locations in videos. Bilen et al. [4] perform latent localization of objects
and actions in a max-margin framework.

Alternatives such as crowd-sourcing (e.g. [15]) could be used to provide detailed
labeling, or certainly to aid in narrowing a search for appropriate latent regions. How-

1 This model will be applied inductively to test data, unlike the Transductive SVM.



ever, the problems mentioned above, of accurate spatio-temporal labeling of regions of
interest, and decisions about contextual regions still persist. The efficacy of the weakly
supervised methods for object and action recognition suggest this direction is fruitful.

Our work formulates a max-margin latent variable model [1, 16, 17] for action recog-
nition with evidence localization, a common paradigm in the vision literature. We build
on this formalism to include a loss function that ties the latent variables over all the
training videos to have a similar appearance. This approach is related to the max-margin
clustering of Xu et al. [18] and the Transductive SVM for structured variables of Zien
et al. [19]. The formulation we present follows in the line of Zien et al., yet uses la-
tent variables rather than the unobserved class labels in their semi-supervised approach.
The resulting learning problem presents a challenging inference task of jointly infer-
ring latent regions for all training images at once. We use dual decomposition [9] to
approximately solve this inference. Dual decomposition has previously been applied to
Markov Random Field parameter learning in vision by Komodakis [10].

3 Latent Region of Interest Model

The goal in this paper is to develop a novel learning framework for application to action
classification in video sequences. This model should produce accurate classification of
new videos, and in addition produce a region of interest within each video that captures
the discriminative essence of the action class. In this section we describe the form of
this model, the features we use, and the representation for the latent region of interest.

3.1 Video Representation

We represent videos using a local feature approach. Statistical representations of the oc-
currence of local visual features have proven effective for action recognition (e.g. [14]).
Beyond the standard bag-of-words approach to characterizing a video, we will also in-
clude a latent region of interest within a video sequence. The final representation for
a video is the concatenation of these two representations. For each action class, we
will learn a set of parameters that describe which local features tend to appear in entire
videos and within latent regions of interest of videos belonging to that class.

More formally, each video x is to be classified with an action label y. We will
formulate a model, with parameters w, for scoring a video x with a class label y:

Fw(x, y) = max
h

fw(x, y, h) (1)

fw(x, y, h) = wTΨ(x, y, h) = wT1 ψ1(x, y) + wT2 ψ2(x, h, y) (2)

In this form, ψ1(x, y) is a feature vector extracted from the whole video x. Here
we use a statistical bag-of-words style representation, computing a bag-of-words his-
togram of local features. We use a standard approach, with densely sampled HOG3D
descriptors [20] vector quantized using k-means. The notation ψ1(x, y) allows for dif-
ferent components of w1 to be active for different class labels, a linear model for each
class y.

The second model component ψ2(x, h, y) is a similar feature, but limited in scope
to a latent region of interest specified by h. The latent region of interest specifies a



spatio-temporal sub-region of a video. The potential function ψ2(x, h, y) aggregates a
bag-of-words histogram on the same HOG3D features, but only over the latent sub-
region of the video.

An illustration of this model is presented in Fig. 2. In the next section we describe
the particular choice of latent regions we use in our experiments. However, it should be
emphasized that the learning framework we develop is general-purpose, and could be
used with other feature representations and latent variable representations.
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Fig. 2: A graphical illustration (a) and an example (b) of our model with latent regions.
A latent variable h selects a subregion of a video x. Descriptors are computed over the
entire video (ψ1) and the selected subregion (ψ2), and used to predict action label y.

3.2 Generating Candidate ROIs

Given an input video, there is a huge combinatorial set of potential spatio-temporal
regions of interest that one could consider. The learning and inference algorithms we
describe will need to operate over this set. Hence, devising a strategy to limit or optimize
the search for latent regions is of primary importance.

Our approach is to build a reduced set of candidate regions of interest in the video.
We utilize the “objectness” operator developed by Alexe et al. [6]. This operator works
on a single frame of the video, and acts like an interest operator, returning bounding
boxes that are likely to contain objects. Since the variety of objects and human poses
one might see in videos is highly variable, we use a very low threshold on the objectness
operator to return a large set of possible bounding boxes. Examples of these are shown
in Fig. 3.

We would like to consider “tracklets” of these interesting regions over time to con-
struct candidate regions of interest. However, one cannot rely on straight-forward track-
ing since the region might change appearance dramatically, might appear and disappear
over the course of the video, or be poorly localized via the objectness operator.

Instead, we perform an appearance-based clustering of all the objectness bounding
boxes. The intuition is that groups of similar bounding boxes will appear in clusters and
form a hypothesis about the ROI for the video.

We use mean shift clustering on RGB color histograms representing each objectness
bounding box. This results in tens of clusters for each video. Fig. 3 shows examples of
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Fig. 3: An illustration of extracting candidate regions of interest. (a) Examples of object-
ness on frames of a video. (b)-(d) three clusters of objectness bounding boxes grouped
by clustering with mean shift. Typically, each cluster captures a tracklet of an object or
a group of objects in time.

these clusters. For our method to be successful, it is necessary that a reasonable ROI
must be present within this set of candidates. In our experiments, this procedure was
effective, and nearly always generates at least one qualitatively “good” candidate region
of interest in each video.

We will then represent a video using a global bag-of-words histogram, combined
with a bag-of-words histogram focused on one of these potential regions of interest.
Note that the choice of regions of interest based on objectness and mean-shift clustering
is a specific choice to ground the description. The method we describe is general, and
can be applied to a variety of descriptors and latent ROI representations, ranging from
clips of frames to segmentations. We next describe how to learn the model parameters
for this representation.

4 Similarity Constrained Latent SVM

We now define the Similarity Constrained Latent SVM, a learning algorithm for weakly
supervised joint action recognition and evidence localization. For the application of
action classification considered here, we assume we are given input videos with action
class labels. We use the video representation described above that includes a holistic
video representation in addition to a latent region of interest. We aim to learn a classifier
that places novel test videos into the correct classes. At the same time, we wish to learn
parameters that produce coherent latent regions, regions that are similar across all the
training videos. We now provide the details of this algorithm; a summary is provided in
Algorithm 1.



Algorithm 1 Training a Similarity Constrained Latent SVM

1: Input : x = {x1, . . . , xN}, y = {y1, . . . , yN}, ε
2: Output : parameters w
3: Initialize w1

4: for t← 1 to N do
5: {h1, h2, . . . , hN} = inferLatent (wt, x,y), Sec. 4.2
6: cwt = δR(wt)

δw
, from Eq. 9

7: Compute [wt+1, w
∗
t , gap], from [21], Alg. 1

8: if gap ≤ ε or t == N then
9: return w∗t

10: end if
11: end for

4.1 Learning Formulation

We assume we are given as input a set of training videos {x1, x2, . . . , xn} with action
class labels {y1, ..., yn}, yi ∈ Y , the set of action classes. As in Eq. 1, we aim to learn
the parameters w of a scoring function

Fw(x, y) = max
h

fw(x, y, h) (3)

that gives a score to labeling a video x with a class label y. This scoring function in-
cludes a maximization over latent variables h which encode the latent region of interest
within a video. The function fw(·) contains terms for a holistic bag-of-words video
representation in addition to features focused on the latent region of interest.

A standard method for learning parameters to such a model is the latent SVM [1, 17]
or max-margin hCRF [16]. However, we wish to enforce that the latent regions chosen
across all videos of a class are coherent. We argue that this can have two advantages.
First, it will result in a model that clusters the latent regions of a video category to
produce a discriminatively chosen summary. Second, it acts as an additional regularizer,
to smooth out the choice of latent variables. We now provide a formal learning criterion
that encompasses this intuition.

The Similarity Constrained Latent SVM chooses model parameters w according to
the following criterion:

min
w,h,ξ>0,ξl

||w||2 + C1

N∑
i=1

ξi + C2

N∑
i=1

ξli (4)

s.t. fw(xi, yi, hi)−max
h

fw(xi, y
′, h) ≥ ∆(yi, y

′)− ξi ∀y′ ∈ Y, ∀i

∆l(h, hi,x,y) ≤ ξli

where h = {h1, ..., hn}, x = {x1, ..., xn}, and y = {y1, ..., yn} are the set of hidden
variables, features, and labels for all training videos respectively.

The slack variables ξi and corresponding first constraint in Eq. 4 are the usual latent
SVM margin constraints on the class labels – model parameters w should correctly



classify videos. We use the standard 0/1 loss:

∆(yi, y
′) = 1[yi 6=y′] (5)

as a penalty on classification error.
The slack variables ξli and corresponding latter constraint enforce the similarity over

latent regions for training videos. We define a loss function ∆l(h, hi,x,y) that mea-
sures how similar the features within latent region hi are to those in the remainder of
the training images. An individual slack variable ξli for each training video allows in-
dividual videos to be outliers from the set of training videos, though with a penalty
controlled by slack-tradeoff parameter C2.

A variety of loss functions can be used for measuring the similarity of training
videos. In our implementation, we choose to measure the distances between pairs of
bag-of-words histograms for training videos. We define:

∆l(h, hi,x,y) =

N∑
j=1

d(hi, hj , xi, xj) · 1[yi=yj ] (6)

where d(hi, hj , xi, xj) is a pairwise dissimilarity measure between two different win-
dows. This dissimilarity is defined as:

d(hi, hj , xi, xj) = −φ(hi, xi)Tφ(hj , xj), (7)

where φ(.) is the feature used to represent the hidden regions (bag-of-words histograms
in our case). Other variants of loss functions could be used here. For instance, we could
also include penalty for similarity between latent regions of videos of different cate-
gories. For simplicity, further we use ∆l(h, hi) instead of ∆l(h, hi,x,y) and d(hi, hj)
instead of d(hi, hj , xi, xj)

In summary, we learn model parametersw that correctly classify videos and enforce
a pair-wise similarity of latent regions simultaneously. This enforcement over training
videos is different from the standard latent SVM, and presents a novel challenge for
learning the parameters w. Next, we describe how we can address this challenge.

4.2 Learning Procedure

We use NRBM, the non-convex bundle optimization by Do and Artières [21] to solve
Eq. 4. In a nutshell, the algorithm iteratively builds an increasingly accurate piecewise
quadratic approximation to the objective function. During each iteration, a new linear
cutting plane is found via a subgradient of the objective function and added to the
piecewise quadratic approximation.

Performing inference of the latent variables h in each iteration is challenging in the
Similarity Constrained Latent SVM model. This is because the addition of a loss func-
tion on latent variables∆l(·) ties the inference of all latent variables together. However,
one can use dual decomposition [9], an approximate inference technique, to address this
problem.



Computing a Subgradient The NRBM method operates on R(w), the unconstrained
equivalent to Eq. 4. The computation of a subgradient is relatively straight-forward,
assuming the inference over h can be done.

R(w) = ||w||2 + C1

N∑
i=1

max
y′,h

[
fw(xi, y

′, h) +∆(yi, y
′)
]

−max
h

[
C1

N∑
i=1

fw(xi, yi, hi)− C2

N∑
i=1

∆l(h, hi)
]

(8)

δR(w)

δw
= 2w +

N∑
i=1

[
Ψ(xi, y

∗
i , h
∗
i )− Ψ(xi, yi, hi)

]
(9)

where y∗, h∗,h = {hi} are defined by:

(y∗i , h
∗
i ) = argmax

y′,h
fw(xi, y

′, h) +∆(yi, y
′)

h = argmax
h,hi∈h

[
C1

N∑
i=1

fw(xi, yi, hi)− C2

N∑
i=1

∆l(h, hi)
] (10)

Inferring Latent Variables At each iteration of NRBM, we must infer the latent vari-
ables h as specified in Eq. 10. This is similar to finding the most violated constraint or
performing loss augmented inference in training latent / structural SVMs.

This inference is challenging due to the linkage of latent variables hi across all
training videos – the loss ∆l depends on all latent variables. The required inference in
Eq. 10 is equivalent to the following:

argmax
h={hi}

[
C1

N∑
i=1

fw(xi, yi, hi)− C2

N∑
i=1

N∑
j=1

∆p
l (hi, hj)

]
,

∆p
l (hi, hj) = d(hi, hj) · 1[yi=yj ]

(11)

where ∆p
l (hi, hj) is a pairwise loss function on latent variables.

We use dual decomposition [9], an approximate inference technique, to solve this
problem. One could use other approximate inference techniques to solve this problem
(e.g. LP relaxation, loopy belief propagation), but dual decomposition has two useful
properties. It is deterministic, which gives consistency of NRBM (see below), and the
structure of our problem lends itself well to the approach of dual decomposition. Dual
decomposition breaks the challenging inference task into smaller, tractable ones via the
use of auxilliary variables. Additional terms are added into the optimization problem to
push the auxilliary variables to agree.

We introduce auxilliary variables Q = {qij} and h′. Each qij will refer to a latent
region for a training video i, and refer to the portion of its loss refering to video j. Terms
will be added to enforce that these variables should represent the same latent region all
the time. These terms state that h′ = h, qij = h′i,∀i, j.

F = max
h′,Q

[
C1

N∑
i=1

fw(xi, yi, h
′
i)− C2

N∑
i=1

N∑
j=1

∆p
l (qij , qji)

]
,

s.t. h′i = qij ∀i, j (12)



Hard constraints of this form are difficult to optimize against, and are equivalent
to the original, hard problem. In dual decomposition, we relax this and form the La-
grangian:

L(λ,h′, Q) = C1

N∑
i=1

fw(xi, yi, h
′
i)− C2

N∑
i=1

N∑
j=1

∆p
l (qij , qji)

+

N∑
i=1

N∑
j=1

λij(ĥi)
[
1[h′

i=ĥi]
− 1[qij=ĥi]

]
(13)

=

N∑
i=1

[
C1fw(xi, yi, h

′
i) +

N∑
j=1

λij(h
′
i)
]

+

N∑
i=1

N∑
j=1

[
− C2∆

p
l (qij , qji)− λij(qij)

]
(14)

Optimization of this is straight-forward, and involves finding independent variables
qij , h′i:

L(λ) = max
h′,Q

L(λ,h′, Q) (15)

= max
h′

N∑
i=1

[
C1fw(xi, yi, h

′
i) +

N∑
j=1

λij(h
′
i)
]

+max
Q

N∑
i=1

N∑
j=1

[
− C2∆

p
l (qij , qji)− λij(qij)

]
(16)

Note that dual decomposition is an approximate inference technique. It is not guar-
ranteed to find the maximum setting of the latent variables h. However, this still can be
used with the NRBM optimization method. In a nutshell, instead of optimizing R(w),
we optimize against an approximation of it. Dual decomposition is deterministic, so
NRBM will optimize against this approximation.

4.3 Applying the Model to Test Videos

Given the model parameters w learned using the procedure above, one can use this to
perform inference on test videos. This inference procedure will score a video-class label
pair, and provide a discriminative latent region for the new test video.

We label a test video with class label y∗ and latent region h∗ as follows:

(y∗, h∗) = argmax
y,h

fw(x, y, h) (17)

Brute force enumeration over possible values for y and h for a test video x is feasible,
since the set of possible values for these is limited. Y is the set of class labels (tens) and
H is the set of objectness clusters (hundreds).



Note that the current application of the model at test time is inductive – the model
parameters w learned on the training set can be applied to any unseen test video. It
would also be possible to develop a transductive variant of this algorithm [8, 19] that
examines the (unlabelled) test videos together with the training videos in learning. This
would enable one to jointly consider the unlabelled test videos and the labelled training
videos when choosing model parameters for the discriminative regions of interest.

5 Experiments

In this section we examine the performance of our model for action recognition and
evidence localization on the UCF-Sports dataset [22]. This dataset contains 150 videos
from 10 action classes: diving, golf swinging, kicking, lifting, horse riding, walking,
running, skating, swinging (on the pommel horse and on the floor), and swinging (at
the high bar). These videos are taken from real sports broadcasts and the bounding
boxes around the subjects are provided for each frame.

Previous results on this dataset use Leave-One-Out Cross Validation (LOO-CV) to
report performance. As indicated in Lan et al. [2] parameter tuning (e.g. regularizer
weighting) in the Leave-One-Out scenario is unclear, and choosing the best parameter
based on the test dataset performance results in biased evaluation. In addition, some
classes of this dataset have significant background correlation between video samples,
and LOO-CV may result in memorizing the background rather than learning the action
itself. For these reasons, the protocol proposed in Lan et al. [2] is employed to divide
the data into training and testing sets.

We compare our algorithm, the Similarity Constrained Latent SVM (SCLSVM), to
two baseline algorithms in order to evaluate the contribution of different parts of the
proposed model. The first baseline only considers action recognition and the second
baseline performs both action recognition and discriminative evidence localization. For
all methods, the HOG3D features are extracted via dense sampling and are used to
create a 4000 word visual codebook. Additionally, in all experiments, C1 is set to 100
based on the study conducted by Lan et al. [2];whereas, C2 from the proposed method
is selected according to the results of cross-validation.

Global bag of words model: We extracted a global bag of words representation
for the whole video similar to [23]. This model corresponds to considering only the
term ψ1(x, y) and ignoring ψ2(x, h, y) in our scoring function fw. We then trained a
multi-class linear SVM classifier upon the global features.

Latent SVM model: This baseline is the same as the model in Eq. 4, except that
it does not include a loss term on the dissimilarity of the ROIs between different video
samples. In other words, this baseline models the ROI as a latent variable that is set
as one of the location hypotheses, and does not penalize the dissimilarity of the ROIs
selected for different videos of the same class. This method is implemented according
to the general Latent SVM framework [1].

Results analysis: We summarize the numerical results in Table 1, where mean per
class recognition accurracy and similarity of the chosen ROIs are compared. First, by
analyzing the difference in performance between the Global BoW SVM model and
LSVM model, we can conclude that our choice of hypothesis space (utilizing “object-
ness” operator and mean shift clustering) was reasonable. Second, we can observe that



Table 1: Mean per class accuracy and normalized ROI similarity.

Method Accuracy ROI Similarity
Global bag of words SVM 65.4 –

Latent SVM 70.4 0.1928
Our model: SCLSVM 75.3 0.2322

Lan et al. [2] 73.1 –

our full model outperforms both baselines (Global BoW SVM and L-SVM) as well as
a fully supervised method [2]. Here, we would like to emphasize that the initialization
for Latent SVM and SCLSVM is done in the same manner, and use the same domain
for the latent variables. SCLSVM outperforms latent SVM due to the modified learning
formulation.

These results demonstrate the positive effect of considering the similarity of dis-
criminative latent regions for videos of the same class. To support this statement, we
measured the similarity between the selected ROIs for the test videos and those of the
corresponding training videos. For example, when considering the test video with se-
lected region ht and predicted label yt, we calculate the normalized similarity between
ht and the ROIs hj of videos from training set with the same label:

S =
1

Nt

Nt∑
j=1

φ(ht,x)
Tφ(hj ,x), (18)

where Nt is a normalization coefficient, equal to the number of training videos with
label yt. The mean per test video similarity lies within the range [−1, 1]. Comparing the
similarity for the Latent SVM with that of our model (Table 1, column 2), SCLSVM
yields ROIs with greater similarity. As we expected, our model tends to choose regions
in test videos that are similar to those used in training. Confusion matrices for all three
models are shown in Fig. 4.

Finally, we provide qualitative results produced by the Similarity Constrained La-
tent SVM model. Fig. 5 demonstrates classification results as well as the localized dis-
criminative evidence (i.e., ROIs) that lead to the classification decision, for several test
videos. In many cases (first and second rows of Fig. 5), SCLSVM chooses a ROI that
corresponds to the subject of the action (human). However, as shown in the third row of

(a) Global BoW SVM model (b) Latent SVM model (c) SCLSVM model

Fig. 4: Confusion matrices for different models



Fig. 5: (Best viewed in color) Visualization of classification results and selected dis-
criminative ROIs indicated by the set of boxes. Green boxes are illustrated for correctly
classified videos; red ones for missclassified videos. The first two rows show correctly
classified examples with ROIs over the subject of the action. The third row contains
correctly classified videos, but with ROIs chosen according to the discriminative con-
text (e.g., videos of the diving action have a distinctive ASDA logo in the background).
The fourth row illustrates missclassified examples.

Fig. 5, context is sometimes more distinctive for specific action classes. In this case, the
ROI is selected in a way to cover similar contextual regions. For example, the diving
class model learns the appearance of the billboard advertisements to classify the diving
action, despite the fact that these regions are not semantically related to the action. This
outcome is aggravated by the fact that the UCF-Sports dataset contains videos with
significant background correlation.

6 Conclusion

We presented a novel learning algorithm, the Similarity Constrained Latent SVM, and
demonstrated its application to weakly supervised action recognition with discrimina-
tive evidence localization. The algorithm learns from training videos with action cate-
gory labels, and produces a classifier that can label test videos and mark a discriminative
region of interest. These regions of interest are learned in a fashion that encourages sim-
ilar regions to be marked on videos from the same action categories. We demonstrated
that the model parameters can be learned efficiently using a combination of NRBM [21]
and dual decomposition. Experimental results showed that this approach compares fa-
vorably to fully supervised methods.
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