Unsupervised Learning of Supervoxel Embeddings for Video Segmentation

Mehran Khodabandeh!?, Srikanth Muralidharan', Arash Vahdat!, Nazanin Mehrasa', Eduardo M.
Pereira®, Shin’ichi Satoh? and Greg Mori!

'Simon Fraser University
2National Institute of Informatics
3SINESC TEC

{mkhodaba, smuralid, avahdat, nmehrasa, mori} @sfu.ca, ejmp @inesctec.pt, satoh@nii.ac.jp

Abstract

We present an algorithm for learning a feature rep-
resentation for video segmentation. Standard video seg-
mentation algorithms utilize similarity measurements in
order to group related pixels. The contribution of our
paper is an unsupervised method for learning the fea-
ture representation used for this similarity. The feature
representation is defined over video supervoxels. An
embedding framework learns a feature mapping for su-
pervoxels in an unsupervised fashion such that super-
voxels with similar context have similar embeddings.
Based on the learned representation, we can merge sim-
ilar supervoxels into spatio-temporal segments. Ex-
perimental results demonstrate the effectiveness of this
learned supervoxel embedding on standard benchmark
data.

1 Introduction

Effective video segmentation can be achieved if a
robust measurement of pixel similarity can be devised.
However, this task is extremely challenging due to vari-
ous complexities that arise from the variability in object
appearance, occlusions in the scene, and camera mo-
tion, among other challenges. In this paper we present
a method for unsupervised learning of feature represen-
tations for video segmentation.

There is a rich history of algorithms for video seg-
mentation within the computer vision literature. Sem-
inal work includes algorithms for analyzing layers of
moving objects, probabilistic models, and graph-based
segmentation algorithms [18} [15} [7]. A key facet of
methods for video segmentation is deciding upon a rep-
resentation for pixels such that pixels from similar ob-
jects are similar in feature representation.

Figure 1: In the embedding space supervoxels of the
same object are brought together while being separated
from supervoxels of the other objects.

Broadly speaking, two veins of work exist for de-
termining a feature representation for video segmenta-
tion. One involves supervised learning: a training set of
segmentations with semantic object category labels is
used. From this, a feature representation is learned that
can distinguish between objects, and is then applied to
segmentation (e.g. [10]).

The second vein uses unsupervised learning / hand-
crafting feature representations. For example, princi-
ples from Gestalt psychology such as common fate have
been used to motivate the design of feature representa-
tions based on motion similarity in classic segmentation
work [15]. More recent segmentation systems com-
bine a set of such hand-crafted feature representations
(e.g. [12]).

The main idea of our paper is to leverage these un-
supervised techniques to learn better feature represen-



tations for segmentation. We operate in a graph-based
segmentation framework on supervoxels. For example,
two supervoxels that have similar motion are likely to
belong to the same object. This fact can be used to re-
fine an appearance-based feature representation, plac-
ing these supervoxels closer together. Likewise, two
supervoxels that have similar appearance are likely to
belong to the same object. This could be used to refine
a motion-based feature presentation for a supervoxel.

We operationalize this by learning an embedding
representation for supervoxels, in which supervoxels
that belong to the same segment have similar repre-
sentations. For example, consider the video shown in
Fig.[I] Supervoxels that belong to the airplane should
have a similar feature representation. However, their
initial appearance features are different. Our unsuper-
vised learning algorithm uses the fact that nearby, sim-
ilarly moving supervoxels are likely to be from similar
objects to learn an embedding that moves the airplane
supervoxels closer together.

This idea is similar to the word2vec algorithm [13]],
which learns an embedding that is able to predict a word
from the context of the neighboring words. In our prob-
lem the context of each supervoxel is determined by
the spatio-temporally nearby supervoxels. Similarly,
in this work, we aim to learn an embedding of super-
voxels from videos, such that contextually similar seg-
ments would have similar representations in the embed-
ded space. After learning the embeddings, we use a
graph-based partitioning algorithm using the embedded
features to produce the final segmentation.

We conduct our experiments on the video segmenta-
tion benchmark dataset [6]. Through our experiments,
we show that the learned embeddings can improve the
performance of video segmentation using appearance-
based [11]] or motion-based [3]] features.

This paper is organized as follows. Section 2] gives
an overview of the related work, Section[3]describes our
method, Section E] contains details of our experiments,
and Section 3] concludes our work.

2 Related Work

Video Segmentation: Video segmentation is a
challenging area of research in computer vision, and
there exists an abundant literature pertaining to it [4, |5}
17,120, 10].

Khoreva et al. use a graph based supervised video
segmentation algorithm [10], where different classifiers
are used region-wise to learn a graph representation for
the video frames, before eventually performing the seg-
mentation using standard graph partitioning methods.
Badrinarayanan et al. [1] develop a semi-supervised ap-

proach involving a mixture of trees based probabilistic
graphical model, where superpixel labels are obtained
by variational inference. Chang et al. build an unsu-
pervised approach to video segmentation [2]. A con-
ditional random field is employed to assign labels to
all the pixels, using higher order potentials with softer
label consistency constraints in order to identify com-
plex spatio-temporal tubes that actually correspond to
the same label. Zhang et al. [20] first identify a primary
object using a layered directed acyclic graph based ap-
proach that assumes that objects are spatially cohesive
and follow smooth trajectory patterns. Once the pri-
mary object models are extracted, segmentation is per-
formed by invoking a scoring function that segments
regions with high optical flow gradients from the back-
ground.

Deep Embedding Methods: Deep learning based
embedding approaches have gained a lot of attention re-
cently, and were shown to be useful under various sce-
narios. Karpathy et al. [8] work on dense image descrip-
tions. A weakly supervised bimodal text-image em-
bedding is performed to generate text phrases for cor-
responding regions of the image, which are then used
to generate dense image descriptions. Ramanathan et
al. [14], learn temporal embeddings using a large un-
labeled video database, and show that these embed-
dings improve the performance of several video related
tasks. Srivatsava et al. [[16] make use of a recurrent neu-
ral network architecture and a large video classification
database [9]] to learn unsupervised representations for
contiguous video frames. They eventually show that
these embeddings significantly help in activity recog-
nition.

3 Our Method

Our goal in this paper is to develop a principled
framework for learning contextually-aware embeddings
for video segments in an unsupervised setting. Video
segments with the same “context” are those which are
in the same vicinity. Therefore, contextually-aware em-
beddings proposed in this paper can be used to group
small video segments into larger groups which represent
either semantically consistent objects or actions that in-
tuitively share a common context.

The main focus of this paper is learning a similarity
measure for supervoxels, which is used for video seg-
mentation. We build our segmentation approach on top
of two recently proposed algorithms. Xu et al.’s super-
voxel extraction algorithm [19] is employed to generate
a large set of small supervoxels for a video. The graph
partitioning algorithm proposed in [5] is then used to
group supervoxels based on embeddings trained by our



proposed model.

This section presents our method as follows. Our
embedding approach is presented in Sec. Sec.
explains the neighbor/negative selection strategy, fol-
lowed by Sec.[3.3|that contains details about supervoxel
extraction and the features used. Finally, we conclude
the section with the video segmentation algorithm that
leverages the similarity measure to construct and parti-
tion the graph representation in Sec.[3.4]

3.1 Learning an Embedding Function

As illustrated in Figure [T} we aim at learning an
embedding function ¢ that maps the supervoxel feature
space to another m-dimensional space. In this space,
contextually similar supervoxels should have similar
vector representations when compared via the dot prod-
uct similarity measurement.

We implement the embedding function ¢ using a
neural network. The input to the network is a feature
vector describing a supervoxel (e.g. motion features or
appearance features from a deep network). The embed-
ding function network is constructed on top of this in-
put. The network we use has two fully connected layers,
each followed by a nonlinear activation function. In this
work we used rectified linear units (ReLLUs) as the acti-
vation functions. Figure[2]illustrates the structure of our
network.

Inspired by the word2vec idea, we wish to perform
a warping of the original supervoxel space to a space
in which a given target supervoxel is separated from
“other” supervoxels using the neighboring supervoxels
as much as possible. Towards this goal, we aim to for-
mulate this problem as an embedding learning problem
that is trained to separate the neighbouring supervox-
els from negatives by a large margin, while bringing the
target closer to the neighbors.

Assume Sy = {s1,82,...,8,} is the set of all the
supervoxels extracted from video V. For each super-
voxel s; € Sy, we define sets of positive and negative
supervoxels. NZ-+ denotes the set of neighbouring su-
pervoxels that are close to s; in space and time (and
are likely to be from the same object), and N, is the
set of negative supervoxels that are distant from s; (in
other words, a limited set of supervoxels that are not in
the same object that s; belongs to). The details of the
neighbour/negative selection strategy are explained in
Section[3.21

We define the representation of the object that s; be-
longs to:
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Figure 2: Architecture of our Embedding Network.
Weights between layers with similar colors are shared.
Le. identical embedding applies to target, negative, and
neighbors.

Where s, is a neighbour of s; and a member of its
neighbour set, N;'.

Here, we use the hinge loss as an objective function
to learn the embedding function ¢:

E(¢)= Y > max(0,1-(¢(s:)—d(sne))-ci)
8i€ESV 5,0, €N,
2
Here, Sy is the set of supervoxels in video V/, s; is the
i'" supervoxel, and s, is an instance of a negative of
5;, which is a member of N, .

For a given video V, the goal is to find a ¢(-) that
minimizes this objective function defined in Equation[2]
For each video we train an individual neural network
with back-propagation with the standard stochastic gra-
dient descent (SGD) method to perform this minimiza-
tion.

The intuition behind Equation [2]is that by minimiz-
ing E(¢) and therefore maximizing ¢(s;) - ¢; — (Sneg) -
c;, we force the embedding to separate a negative su-
pervoxel from supervoxels of the object that s; belongs
to, while bringing s; closer to them. Note that here we
use dot product similarity, so “separating” and “bring-
ing close” mean “more difference” and “less difference”
in the angle between two vectors, respectively.

3.2 Negative and Neighbor Selection Strategy

In our algorithm, the selection of neighbors and neg-
atives are critical to the performance of our algorithm.
For a given supervoxel s;, we assume that the embed-
ding of s; is similar to the embedding of the set of su-
pervoxels that are close to s; in space and time. In ad-
dition, based on our assumption, the embedding of s;
should be different from the embedding of a negative
supervoxel, speg, Which is not from the same object as
s;. Essentially, any supervoxel that is far from s; and is
not from the same object is a candidate negative. How-
ever, in our experiments we found that not all the far



supervoxels are proper negative candidates; and not all
the neighboring supervoxels represent the object that s;
is extracted from. As for negatives, based on our ob-
servations we decided to choose “hard negatives”. Hard
negatives of s; are the closest supervoxels to s; which
are not in the set of neighbours (N;r ).

Therefore, for choosing the hard negatives and
neighbours of supervoxel s;, we first create a pool of
candidate supervoxels by extracting a set of supervox-
els that are close to s; spatio-temporally. From this
set we pick both “neighbors” and “negatives.” We use
center of mass to represent the spatial position of a su-
pervoxel, and we use Euclidean distance to measure the
distance between suprevoxels. Then we sort the set of
candidates based on their distance to s; in the feature
space. Now we select the K closest ones as “neigh-
bors” and the F' farthest ones as “negatives” (Figure ).
In our experiments we tuned these parameters to obtain
the best performance.

3.3 Supervoxels and Feature Extraction

Given an input video V' we use Xu’s algorithm
to extract the initial supervoxel set Sy,. Xu et al.
produces supervoxels in a hierarchical manner, where at
each level of the hierarchy supervoxels are constructed
by merging the previous level in the hierarchy. There-
fore the lower the level in the hierarchy the more su-
pervoxels are available. We use the lowest level that is
computationally affordable, level 8 with about 2000 su-
pervoxels constructed from a 120 frame video. Other
parameters are set as the default of the code. We use
a simple averaging function as the aggregation method
for computing supervoxel feature:

s
<
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where ¢ = 1, 2, ..., n. Here n is equal to the number of
supervoxels, P; is equal to the number of pixels belong-
ing to supervoxel ¢, and p; is the value of the feature
map of the j** pixel of the supervoxel.

We extract two different pixel-level feature types.
The first representation is HOF [3], representing pixel
motion from optical flow. The second descriptor is the
FCN segmentation mask, which represents each
pixel with a 21 class score map obtained by passing a
frame as input to the model EI that was trained on the
PASCAL VOC dataset. We used default parameters
provided by the code for both HOF and FCN.

Ihttp://dl.caffe.berkeleyvision.orqg/
fcn-8s—-pascal.caffemodel
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(b) Groundtruth

(c) Hand-crafted similarity (d) Embedding similarity
Figure 3: Given a target supervoxel (the blue one on the
front car in (c)), we color the other supervoxels based on
their cosine similarity to the target. Intensity of pink and
yellow indicates magnitude of dissimilarity and similar-
ity, respectively. After the embedding, supervoxels on
the front car are more similar to the target (blue) super-
voxel.

(a) Original

(b) Negative and Neighbors

Figure 4: A sample of selected negative supervoxels
(red region) and neighboring supervoxels (green region)
for a given supervoxel (blue).

3.4 Video Segmentation

In our work, for each video we train a separate net-
work. Given a trained network and a supervoxel s;, we
obtain the learned representation of s;, which is ¢(s;)
by feeding its feature vector to the network and collect-
ing the values of the network output. We define the sim-
ilarity matrix [W],,x, that contains pairwise affinities
as: W = ®®T. Here [®],,x, is the embedding of all
the supervoxels. Then we use Galasso’s algorithm [4] to
re-weight the matrix W based on the supervoxels in the
lower level of hierarchy. The i-th row of W contains the
similarity between supervoxel s; and all other supervox-
els. Figure[3|shows how the similarity between a partic-
ular supervoxel and other supervoxels change after the
embedding. The resulting similarity matrix is then used
in spectral clustering to obtain a final segmentation.
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Figure 5: Boundary Precision Recall(BPR), Volume
Precision Recall(VPR), Length Precision Curve(LPC),
Ncluster video segmentation statistics obtained using
FCN and HOF embeddings

4 Experiments

We evaluate our method on the VSB100 database
[6]. It consists of a diverse set of video instances. The
database specifies training and testing sets of videos.
Our method is an unsupervised learning method in
which we learn an embedding for supervoxels. In our
experiments we perform this learning one video at a
time, and hence we use only the test set for evaluating
our method. The test set consists of 60 videos. We used
HOF and FCN as features for testing the efficacy of neu-
ral network based embedding . As a baseline, for each
feature we evaluate the segmentation performance us-
ing the corresponding feature without embedding. We
follow the evaluation protocol in VSB100: Volume Pre-
cision Recall (VPR), Boundary Precision Recall (BPR),
Length Precision Recall (LPR) and number of clusters
(NCluster) statistics are reported; the Volume Precision
Recall curve’s best F-Measure is used as an aggregate
measure of performance.

We use Caffe to implement our learning framework.
We use a separate network for each video. We tuned the
parameters for each network by trying a range of pa-
rameters and choosing the ones with highest F-measure
(VPR). The values that we chose for the parameters are
as follows: number of neighbors € {4, 8}, number of
negatives € {6, 12}, batch size € {128,256}. In all our
experiments, we use an initial learning rate of 0.001.
The learning rate is reduced by a factor of 0.1 after each
400 iterations. We perform 20 epochs of stochastic gra-
dient descent, which is sufficient for convergence for

this dataset.

Method | VPR
HOF without embedding 44.30
HOF with embedding 46.50
FCN without embedding 51.39
FCN with embedding 53.68
Concat HOF, FCN without embedding|49.70
Concat HOF, FCN and embed 52.52

Table 1: Comparison of F-Measure score of Volume
Precision Rate (VPR) obtained using feature after em-
bedding versus features without embedding on VSB100
test set.

From the numbers tabulated in Table [T} it is evident
that embedding features improves the segmentation per-
formance compared to its non-embedded counterpart by
2.2% on HOF, 2.3% on FCN, and 2.8% on combination
of HOF and FCN. Fig. [5] shows different segmentation
statistics obtained in these experiments.

Note that state-of-the-art supervised learning meth-
ods [10] do obtain higher performance on this task.
When using pixel-level labels in training data, 70%
VPR can be achieved. However, acquiring pixel-level
labels can be expensive. Our experiments demonstrate
the effectiveness of learning embeddings without need
for additional supervision.

4.1 Discussion

We found that the performance of our model is high
in the videos where there are heterogeneous object(s)
with different spatial and temporal features. This is be-
cause, firstly, our model is constructed on the hypoth-
esis that the supervoxels that are close enough in the
spatial dimension, and also in the feature space used to
decide on the neighbors/negatives (e.g. HOF in case of
FCN embeddings, and vice versa), are from the same
object.

Conversely, it is difficult for our model to pro-
duce good segmentation in videos that have numer-
ous smaller and visually similar objects. Firstly this
violates our neighbor/negative hypothesis construction.
Secondly, the evaluation is originally intended for test-
ing semantic segmentation algorithms and might re-
quire higher-level semantic information to make these
distinctions. These features of our model are evident
from the sample visualizations shown in Fig.[3|and [0

5 Conclusion

In this work, we tackled the problem of video seg-
mentation using an unsupervised deep embedding ap-



(a) Original

(b) Groundtruth

(c) FCN no embed

(d) FCN embed

(e) HOF no embed  (f) HOF embed

Figure 6: Visualization of segmentations obtained by applying our method using different features. Each colour in a
segmentation represents a distinct segment obtained by applying that method.

proach. This embedding provides a discriminative map-
ping of supervoxel feature representations for a given
video. We found that this learning has the potential to
help in separating a supervoxel’s neighbor feature rep-
resentation from the feature representation of a distant
supervoxel. We demonstrated this embedding on differ-
ent spatial/temporal features.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

V. Badrinarayanan, I. Budvytis, and R. Cipolla. Mixture
of trees probabilistic graphical model for video segmen-
tation. IJCV, 2014.

J. Chang, D. Wei, and J. Fisher. A video representation
using temporal superpixels. CVPR, 2013.

N. Dalal, B. Triggs, and C. Schmid. Human detec-
tion using oriented histograms of flow and appearance.
ECCYV, 2006.

F. Galasso, R. Cipolla, and B. Schiele. Video segmen-
tation with superpixels. ACCV, 2012.

F. Galasso, M. Keuper, T. Brox, and B. Schiele. Spectral
graph reduction for efficient image and streaming video
segmentation. CVPR, 2014.

F. Galasso, N. Nagaraja, T. Cardenas, T. Brox, and
B. Schiele. A unified video segmentation benchmark:
Annotation, metrics and analysis. /CCV, 2013.

M. Irani and P. Anandan. A unified approach to moving
object detection in 2d and 3d scenes. PAMI, 1998.

A. Karpathy and L. Fei-Fei. Deep visual-semantic
alignments for generating image descriptions. CVPR,
2015.

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Suk-
thankar, and L. Fei-Fei. Large-scale video classification

with convolutional neural networks. CVPR, 2014.
A. Khoreva, F. Galasso, M. Hein, and B. Schiele. Clas-

sifier based graph construction for video segmentation.

In CVPR, 2015.

J. Long, E. Shelhamer, and T. Darrell. Fully convo-
lutional networks for semantic segmentation. CVPR,
2015.

J. Lu, R. Xu, and J. J. Corso. Human action segmen-
tation with hierarchical supervoxel consistency. CVPR,
2015.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Effi-
cient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781, 2013.

V. Ramanathan, K. Tang, G. Mori, and L. Fei-Fei.
Learning temporal embeddings for complex video anal-
ysis. ICCV, 2015.

J. Shi and J. Malik. Motion segmentation and tracking
using normalized cuts. ICCV, 1998.

N. Srivastava, E. Mansimov, and R. Salakhutdinov.
Unsupervised learning of video representations using
Istms. arXiv preprint arXiv:1502.04681, 2015.

N. Sundaram and K. Keutzer. Long term video segmen-
tation through pixel level spectral clustering on gpus.

ICCV, 2011.
Y. Weiss and E. H. Adelson. A unified mixture frame-

work for motion segmentation: incorporating spatial co-
herence and estimating the number of models. CVPR,

1996.
C. Xu, C. Xiong, and J. J. Corso. Streaming hierarchical

video segmentation. ECCV, 2012.
D. Zhang, O. Javed, and M. Shah. Video object segmen-

tation through spatially accurate and temporally dense
extraction of primary object regions. CVPR, 2013.



	Introduction
	Related Work
	Our Method
	Learning an Embedding Function
	Negative and Neighbor Selection Strategy
	Supervoxels and Feature Extraction
	Video Segmentation

	Experiments
	Discussion

	Conclusion

