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Abstract

In group activity recognition, the temporal dynamics of
the whole activity can be inferred based on the dynamics
of the individual people representing the activity. We build
a deep model to capture these dynamics based on LSTM
(long short-term memory) models. To make use of these ob-
servations, we present a 2-stage deep temporal model for
the group activity recognition problem. In our model, a
LSTM model is designed to represent action dynamics of
individual people in a sequence and another LSTM model
is designed to aggregate person-level information for whole
activity understanding. We evaluate our model over two
datasets: the Collective Activity Dataset and a new vol-
leyball dataset. Experimental results demonstrate that our
proposed model improves group activity recognition perfor-
mance compared to baseline methods.

1. Introduction

What are the people in Figure 1 doing? This question
can be answered at numerous levels of detail – in this paper
we focus on the group activity, a high-level answer such
as “team spiking acivity”. We develop a novel hierarchical
deep model for group activity recognition.

A key cue for group activity recognition is the spatio-
temporal relations among the people in the scene. Deter-
mining where individual people are in a scene, analyzing
their image appearance, and aggregating these features and
their relations can discern which group activity is present.
A volume of research has explored models for this type
of reasoning [4, 21, 27, 1]. However, these approaches
have focused on probabilistic or discriminative models built
upon hand-crafted features. Since they rely on shallow
hand crafted feature representations, they are limited by
their representational abilities to model a complex learning
task. Deep representations have overcome this limitation
and yielded state of the art results in several computer vi-
sion benchmarks [18, 33, 16].

∗Equal Contribution

Figure 1: Group activity recognition via a hierarchical
model. Each person in a scene is modeled using a temporal
model that captures his/her dynamics, these models are in-
tegrated into a higher-level model that captures scene-level
activity.

A naive approach to group activity recognition with a
deep model would be to simply treat an image as an holis-
tic input. One could train a model to classify this image
according to the group activity taking place. However, it
isn’t clear if this will work given the redundancy in the
training data: with a dataset of volleyball videos, frames
will be dominated by features of volleyball courts. The
differences between the different classes of group activities
are about spatio-temporal relations between people, beyond
just global appearance. Forcing a deep model to learn in-
variance to translation, to focus on the relations between
people, presents a significant challenge to the learning al-
gorithm. Similar challenges exist in the object recognition
literature, and research often focuses on designing pooling
operators for deep networks (e.g. [36]) that enable the net-
work to learn effective classifiers.

Group activity recognition presents a similar challenge
– appropriate networks need to be designed that allow the
learning algorithm to focus on differentiating higher-level



classes of activities. Hence, we develop a novel hierarchical
deep temporal model that reasons over individual people.
Given a set of detected and tracked people, we run temporal
deep networks (LSTMs) to analyze each individual person.
These LSTMs are aggregated over the people in a scene
into a higher level deep temporal model. This allows the
deep model to learn the relations between the people (and
their appearances) that contribute to recognizing a particular
group activity.

The main contribution of this paper is the proposal of
a novel deep architecture that models group activities in
a principled structured temporal framework. Our 2-stage
approach models individual person activities in its first
stage, and then combines person level information to rep-
resent group activities. The model’s temporal representa-
tion is based on the long short-term memory (LSTM): re-
current neural networks such as these have recently demon-
strated successful results in sequential tasks such as im-
age captioning [9] and speech recognition [10]. Through
the model structure, we aim at constructing a representa-
tion that leverages the discriminative information in the hi-
erarchical structure between individual person actions and
group activities. The model can be used in general group
activity applications such as video surveillance, sport ana-
lytics, and video search and retrieval.

To cater the needs of our problem, we also propose a new
volleyball dataset that offers person detections, and both the
person action label, as well as the group activity label. The
camera view of the selected sports videos allows us to track
the players in the scene. Experimentally, the model is effec-
tive in recognizing the overall team activity based on recog-
nizing and integrating player actions.

This paper is organized as follows. In Section 2, we
provide a brief overview of the literature related to activity
recognition. In Section 3, we elaborate details of the pro-
posed group activity recognition model. In Section 4, we
tabulate the performance of approach, and end in Section 5
with a conclusion of this work.

2. Related Work
Human activity recognition is an active area of research,

with many existing algorithms. Surveys by Weinland et
al. [40] and Poppe [26] explore the vast literature in activ-
ity recognition. Here, we will focus on the group activ-
ity recognition problem and recent related advances in deep
learning.

Group Activity Recognition: Group activity recogni-
tion has attracted a large body of work recently. Most pre-
vious work has used hand-crafted features fed to structured
models that represent information between individuals in
space and/or time domains. Lan et al. [23] proposed an
adaptive latent structure learning that represents hierarchi-
cal relationships ranging from lower person-level informa-

tion to higher group-level interactions. Lan et al. [22] and
Ramanathan et al. [27] explore the idea of social roles, the
expected behaviour of an individual person in the context
of group, in fully supervised and weakly supervised frame-
works respectively. Choi and Savarese [3] have unified
tracking multiple people, recognizing individual actions, in-
teractions and collective activities in a joint framework. In
other work [5], a random forest structure is used to sample
discriminative spatio-temporal regions from input video fed
to 3D Markov random field to localize collective activities
in a scene. Shu et al. [30] detect group activities from aerial
video using an AND-OR graph formalism. The above-
mentioned methods use shallow hand crafted features, and
typically adopt a linear model that suffers from representa-
tional limitations.

Sport Video Analysis: Previous work has extended
group activity recognition to team activity recognition in
sport footage. Seminal work in this vein includes Intille
and Bobick [13], who examined stochastic representations
of American football plays. Siddiquie et al. [31] proposed
sparse multiple kernel learning to select features incorpo-
rated in a spatio-temporal pyramid. Morariu et al. [24]
track players, infer part locations, and reason about tempo-
ral structure in 1-on-1 basketball games. Swears et al. [35]
used the Granger Causality statistic to automatically con-
strain the temporal links of a Dynamic Bayesian Network
(DBN) for handball videos. Direkoglu and O’Connor [8]
solved a particular Poisson equation to generate a holis-
tic player location representation. Kwak et al. [20] opti-
mize based on a rule-based depiction of interactions be-
tween people.

Deep Learning: Deep Convolutional Neural Networks
(CNNs) have shown impressive performance by unifying
feature and classifier learning and the availability of large
labeled datasets. Successes have been demonstrated on a
variety of computer vision tasks including image classifica-
tion [18, 33] and action recognition [32, 16]. More flexi-
ble recurrent neural network (RNN) based models are used
for handling variable length space-time inputs. Specifically,
LSTM [12] models are popular among RNN models due
to the tractable learning framework that they offer when it
comes to deep representations. These LSTM models have
been applied to a variety of tasks [9, 10, 25, 38]. For in-
stance, in Donahue et al. [9], the so-called Long term Recur-
rent Convolutional network, formed by stacking an LSTM
on top of pre-trained CNNs, is proposed for handling se-
quential tasks such as activity recognition, image descrip-
tion, and video description. In Karpathy et al. [15], struc-
tured objectives are used to align CNNs over image regions
and bi-directional RNNs over sentences. A deep multi-
modal RNN architecture is used for generating image de-
scriptions using the deduced alignments.

In this work, we aim at building a hierarchical struc-



tured model that incorporates a deep LSTM framework to
recognize individual actions and group activities. Previous
work in the area of deep structured learning includes Tomp-
son et al. [37] for pose estimation, and Zheng et al. [42]
and Schwing et al. [29] for semantic image segmentation.
In Deng et al. [7] a similar framework is used for group
activity recognition, where a neural network-based hier-
archical graphical model refines person action labels and
learns to predict the group activity simultaneously. While
these methods use neural network-based graphical repre-
sentations, in our current approach, we leverage LSTM-
based temporal modelling to learn discriminative informa-
tion from time varying sports activity data. In [41], a new
dataset is introduced that contains dense multiple labels per
frame for underlying action, and a novel Multi-LSTM is
used to model the temporal relations between labels present
in the dataset.

Datasets: Popular datasets for activity recognition in-
clude the Sports-1M dataset [15], UCF 101 database [34],
and the HMDB movie database [19]. These datasets started
to shift the focus to unconstrained Internet videos that con-
tain more intra-class variation, compared to a constrained
dataset. While these datasets continue to focus on indi-
vidual human actions, in our work we focus on recogniz-
ing more complex group activities in sport videos. Choi et
al. [4] introduced the Collective Activity Dataset consisting
of real world pedestrian sequences where the task is to find
the high level group activity. In this paper, we experiment
with this dataset, but also introduce a new dataset for group
activity recognition in sport footage which is annotated with
player pose, location, and group activities to encourage sim-
ilar research in the sport domain.

3. Proposed Approach
Our goal in this paper is to recognize activities per-

formed by a group of people in a video sequence. The input
to our method is a set of tracklets of the people in a scene.
The group of people in the scene could range from players
in a sports video to pedestrians in a surveillance video. In
this paper we consider three cues that can aid in determining
what a group of people is doing:

• Person-level actions collectively define a group activ-
ity. Person action recognition is a first step toward rec-
ognizing group activities.

• Temporal dynamics of a person’s action is higher-
order information that can serve as a strong signal for
group activity. Knowing how each person’s action is
changing over time can be used to infer the group’s
activity.

• Temporal evolution of group activity represents how
a group’s activity is evolving over time. For example,

in a volleyball game a team may move from defence
phase to pass and then attack.

Many classic approaches to the group activity recog-
nition problem have modeled these elements in a form
of structured prediction based on hand crafted features
[39, 28, 23, 22, 27]. Inspired by the success of deep learn-
ing based solutions, in this paper, a novel hierarchical deep
learning based model is proposed that is potentially capable
of learning low-level image features, person-level actions,
their temporal relations, and temporal group dynamics in a
unified end-to-end framework.

Given the sequential nature of group activity analysis,
our proposed model is based on a Recurrent Neural Net-
work (RNN) architecture. RNNs consist of non-linear units
with internal states that can learn dynamic temporal behav-
ior from a sequential input with arbitrary length. Therefore,
they overcome the limitation of CNNs that expect constant
length input. This makes them widely applicable to video
analysis tasks such as activity recognition.

Our model is inspired by the success of hierarchical
models. Here, we aim to mimic a similar intuition using
recurrent networks. We propose a deep model by stacking
several layers of RNN-type structures to model a large range
of low-level to high-level dynamics defined on top of people
and entire groups. We describe the use of these RNN struc-
tures for individual and group activity recognition next.

3.1. Temporal Model of Individual Action

Given tracklets of each person in a scene, we use long
short-term memory (LSTM) models to represent temporally
the action of each individual person. Such temporal infor-
mation is complementary to spatial features and is critical
for performance. LSTMs, originally proposed by Hochre-
iter and Schmidhuber [12], have been used successfully for
many sequential problems in computer vision. Each LSTM
unit consists of several cells with memory that stores infor-
mation for a short temporal interval. The memory content
of a LSTM makes it suitable for modeling complex tempo-
ral relationships that may span a long range.

The content of the memory cell is regulated by several
gating units that control the flow of information in and out
of the cells. The control they offer also helps in avoiding
spurious gradient updates that can typically happen in train-
ing RNNs when the length of a temporal input is large. This
property enables us to stack a large number of such layers
in order to learn complex dynamics present in the input in
different ranges.

We use a deep Convolutional Neural Network (CNN) to
extract features from the bounding box around the person
in each time step on a person trajectory. The output of the
CNN, represented by xt, can be considered as a complex
image-based feature describing the spatial region around a



person. Assuming xt as the input of an LSTM cell at time
t, the cell activition can be formulated as :

it = σ(Wxixt +Whiht−1 + bi) (1)
ft = σ(Wxfxt +Whfht−1 + bf ) (2)
ot = σ(Wxoxt +Whoht−1 + bo) (3)
gt = φ(Wxcxt +Whcht−1 + bc) (4)
ct = ft � ct−1 + it � gt (5)
ht = ot � φ(ct) (6)

Here, σ stands for a sigmoid function, and φ stands for
the tanh function. xt is the input, ht ∈ RN is the hidden
state with N hidden units, ct ∈ RN is the memory cell,
it ∈ RN , ft ∈ RN , ot ∈ RN , and, gt ∈ RN are input gate,
forget gate, output gate, and input modulation gate at time t
respectively. � represents element-wise multiplication.

When modeling individual actions, the hidden state ht
could be used to model the action a person is performing
at time t. Note that the cell output is evolving over time
based on the past memory content. Due to the deployment
of gates on the information flow, the hidden state will be
formed based on a short-range memory of the person’s past
behaviour. Therefore, we can simply pass the output of the
LSTM cell at each time to a softmax classification layer1 to
predict individual person-level action for each tracklet.

The LSTM layer on top of person trajectories forms the
first stage of our hierarchical model. This stage is designed
to model person-level actions and their temporal evolu-
tion. Our training proceeds in a stage-wise fashion, first
training to predict person level actions, and then pasing the
hidden states of the LSTM layer to the second stage for
group activity recognition, as discussed in the next section.

3.2. Hierarchical Model for Group Activity Recog-
nition

At each time step, the memory content of the first LSTM
layer contains discriminative information describing the
subject’s action as well as past changes in his action. If
the memory content is correctly collected over all people in
the scene, it can be used to describe the group activity in the
whole scene.

Moreover, it can also be observed that direct image-
based features extracted from the spatial domain around a
person carries a discriminative signal for the ongoing activ-
ity. Therefore, a deep CNN model is used to extract com-
plex features for each person in addition to the temporal
features captured by the first LSTM layer.

At this moment, the concatenation of the CNN features
and the LSTM layer represent temporal features for a per-
son. Various pooling strategies can be used to aggregate
these features over all people in the scene at each time step.

1More precisely, a fully connected layer fed to softmax loss layer.

The output of the pooling layer forms our representation for
the group activity. The second LSTM network, working on
top of the temporal representation, is used to directly model
the temporal dynamics of group activity. The LSTM
layer of the second network is directly connected to a clas-
sification layer in order to detect group activity classes in a
video sequence.

Mathematically, the pooling layer can be expressed as
the following:

Ptk = xtk ⊕ htk (7)
Zt = Pt1 � Pt2 ... � Ptk (8)

In this equation, htk corresponds to the first stage LSTM
output, and xtk corresponds to the AlexNet fc7 feature, both
obtained for the kth person at time t. We concatenate these
two features (represented by ⊕) to obtain the temporal fea-
ture representation Ptk for kth person. We then construct the
frame level feature representation Zt at time t by applying a
max pooling operation (represented by �) over the features
of all the people. Finally, we feed the frame level repre-
sentation to our second LSTM stage that operates similar
to the person level LSTMs that we described in the pre-
vious subsection, and learn the group level dynamics. Zt,
passed through a fully connected layer, is given to the input
of the second-stage LSTM layer. The hidden state of the
LSTM layer represented by hgroupt carries temporal infor-
mation for the whole group dynamics. hgroupt is fed to a
softmax classification layer to predict group activities.

3.3. Implementation Details

We trained our model in two steps. In the first step, the
person-level CNN and the first LSTM layer are trained in
an end-to-end fashion using a set of training data consist-
ing of person tracklets annotated with action labels. We
implement our model using Caffe [14]. Similar to other
approaches [9, 7, 38], we initialize our CNN model with
the pre-trained AlexNet network and we fine-tune the whole
network for the first LSTM layer. 9 timesteps and 3000 hid-
den nodes are used for the first LSTM layer and a softmax
layer is deployed for the classification layer in this stage.

After training the first LSTM layer, we concatenate the
fc7 layer of AlexNet and the LSTM layer for every person
and pool over all people in a scene. The pooled features,
which correspond to frame level features, are fed to the sec-
ond LSTM network. This network consists of a 3000-node
fully connected layer followed by a 9-timestep 500-node
LSTM layer which is passed to a softmax layer trained to
recognize group activity labels.

For training all our models (that include both the base-
line models and both the stages of the two-stage model), we
follow the same training protocol. We use a fixed learning
rate of 0.00001 and a momentum of 0.9. For tracking sub-



Figure 2: Our two-stage model for a volleyball match. Given tracklets of K-players, we feed each tracklet in a CNN, followed
by a person LSTM layer to represent each player’s action. We then pool over all people’s temporal features in the scene. The
output of the pooling layer is feed to the second LSTM network to identify the whole teams activity.

jects in a scene, we used the tracker by Danelljan et al. [6],
implemented in the Dlib library [17].

4. Experiments
In this section, we evaluate our model by comparing

our results with several baselines and previously published
works on the Collective Activity Dataset [4] and our new
volleyball dataset. First, we describe our baseline mod-
els. Then, we present our results on the Collective Activity
Dataset followed by experiments on the volleyball dataset.

4.1. Baselines

The following baselines are considered in all our experi-
ments:

1. Image Classification: This baseline is the basic
AlexNet model fine-tuned for group activity recogni-
tion in a single frame.

2. Person Classification: In this baseline, the AlexNet
CNN model is deployed on each person, fc7 features
are pooled over all people, and are fed to a softmax
classifier to recognize group activities in each single
frame.

3. Fine-tuned Person Classification: This baseline is
similar to the previous baseline with one distinction.
The AlexNet model on each player is fine-tuned to
recognize person-level actions. Then, fc7 is pooled
over all players to recognize group activities in a scene
without any fine-tuning of the AlexNet model. The
rational behind this baseline is to examine a scenario
where person-level action annotations as well as group

activity annotations are used in a deep learning model
that does not model the temporal aspect of group ac-
tivities. This is very similar to our two-stage model
without the temporal modeling.

4. Temporal Model with Image Features: This baseline
is a temporal extension of the first baseline. It exam-
ines the idea of feeding image level features directly to
a LSTM model to recognize group activities. In this
baseline, the AlexNet model is deployed on the whole
image and resulting fc7 features are fed to a LSTM
model. This baseline can be considered as a reimple-
mentation of Donahue et al. [9].

5. Temporal Model with Person Features: This base-
line is a temporal extension of the second baseline:
fc7 features pooled over all people are fed to a LSTM
model to recognize group activities.

6. Two-stage Model without LSTM 1: This baseline is
a variant of our model, omitting the person-level tem-
poral model (LSTM 1). Instead, the person-level clas-
sification is done only with the fine-tuned person CNN.

7. Two-stage Model without LSTM 2: This baseline is
a variant of our model, omitting the group-level tem-
poral model (LSTM 2). In other words, we do the fi-
nal classification based on the outputs of the temporal
models for individual person action labels, but without
an additional group-level LSTM.

4.2. Experiments on the Collective Activity Dataset

The Collective Activity Dataset [4] has been widely used
for evaluating group activity recognition approaches in the



computer vision literature [1, 7, 2]. This dataset consists of
44 videos, eight person-level pose labels (not used in our
work), five person level action labels, and five group-level
activities. A scene is assigned a group activity label based
on the majority of what people are doing. We follow the
train/test split provided by [11]. In this section, we present
our results on this dataset.

Method Accuracy
B1-Image Classification 63.0
B2-Person Classification 61.8
B3-Fine-tuned Person Classification 66.3
B4-Temporal Model with Image Features 64.2
B5-Temporal Model with Person Features 62.2
B6-Two-stage Model without LSTM 1 70.1
B7-Two-stage Model without LSTM 2 76.8
Two-stage Hierarchical Model 81.5

Table 1: Comparison of our method with baseline methods
on the Collective Activity Dataset.

Method Accuracy
Contextual Model [23] 79.1
Deep Structured Model [7] 80.6
Our Two-stage Hierarchical Model 81.5
Cardinality kernel [11] 83.4

Table 2: Comparison of our method with previously pub-
lished works on the Collective Activity Dataset.

In Table 1, the classification results of our proposed ar-
chitecture is compared with the baselines. As shown in
the table, our two-stage LSTM model significantly outper-
forms the baseline models. An interesting comparison can
be made between temporal and frame-based counterparts
including B1 vs. B4, B2 vs. B5 and B3 vs. our two-stage
model. It is interesting to observe that adding temporal in-
formation using LSTMs improves the performance of these
baselines.

Table 2 compares our method with state of the art meth-
ods for group activity recognition. The performance of our
two-stage model is comparable to the state of the art meth-
ods. Note that only Deng et al. [7] is a previously published
deep learning model. We postulate that there would be a
significant improvement in the relative performance of our
model if we had a larger dataset for recognizing group activ-
ities. In contrast, the cardinality kernel approach [11] out-
performed our model. It should be noted that this approach
works on hand crafted features fed to a model highly opti-
mized for a cardinality problem (i.e. counting the number

of actions in the scene) which is exactly the way group ac-
tivities are defined in this dataset.

4.2.1 Discussion

The confusion matrix obtained for the Collective Activity
Dataset using our two-stage model is shown in Figure 3.
We observe that the model performs almost perfectly for
the talking and queuing classes, and gets confused between
crossing, waiting, and walking. Such behaviour is perhaps
due to a lack of consideration of spatial relations between
people in the group, which is shown to boost the perfor-
mance of previous group activity recognition methods: e.g.
crossing involves the walking action, but is confined in a
path which people perform in orderly fashion. Therefore,
our model that is designed only to learn the dynamic proper-
ties of group activities often gets confused with the walking
action.

It is clear that our two-stage model has improved perfor-
mance with compared to baselines. The temporal informa-
tion improves performance. Further, finding and describing
the elements of a video (i.e. persons) provides benefits over
utilizing frame level features.

Figure 3: Confusion matrix for the Collective Activity
Dataset obtained using our two-stage model.

4.3. Experiments on the Volleyball Dataset

In order to evaluate the performance of our model for
team activity recognition on sport footage, we collected a
new dataset based on publicly available YouTube volleyball
videos. We annotated 1525 frames that were handpicked
from 15 videos with seven player action labels and six team
activity labels. We used frames from 2/3rd of the videos
for training, and the remaining 1/3rd for testing. The list of
action and activity labels and related statistics are tabulated
in Tables 3 and 4.
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Figure 4: Visualizations of the generated scene labels using our model. Green denotes correct classifications, red denotes
incorrect. The incorrect ones correspond to the confusion between different actions in ambiguous cases (h and j examples),
or in the left and right distinction (i example).

From the tables, we observe that the group activity labels
are relatively more balanced compared to the player action
labels. This follows from the fact that we often have peo-
ple present in static actions like standing compared to dy-
namic actions (setting, spiking, etc.). Therefore, our dataset
presents a challenging team activity recognition task, where
we have interesting actions that can directly determine the
group activity occur rarely in our dataset. The dataset will

be made publicly available to facilitate future comparisons
2.

In Table 5, the classification performance of our pro-
posed model is compared against the baselines. Similar
to the performance in the Collective Activity Dataset, our
two-stage LSTM model outperforms the baseline models.

2https://github.com/mostafa-saad/
deep-activity-rec

https://github.com/mostafa-saad/deep-activity-rec
https://github.com/mostafa-saad/deep-activity-rec


Group No. of
Activity Class Instances
Right set 229
Right spike 187
Right pass 267
Left pass 304
Left spike 246
Left set 223

Table 3: Statistics of
the group activity la-
bels in the volleyball
dataset.

Action Average No. of
Classes Instance per Frame
Waiting 0.30
Setting 0.33
Digging 0.57
Falling 0.21
Spiking 0.28
Blocking 0.58
Others 9.22

Table 4: Statistics of
the action labels in the
volleyball dataset.

However, compared to the baselines, the performance gain
using our model is more modest. This is likely because we
can infer group activity in volleyball by using just a few
frames. Therefore, in the volleyball dataset, our baseline B1
is closer to the actual model’s performance, compared to the
Collective Activity Dataset. Moreover, explicitly modeling
people is necessary for obtaining better performance in this
dataset, since the background is rapidly changing due to a
fast moving camera, and therefore it corrupts the temporal
dynamics of the foreground. This could be verified from the
performance of our baseline model B4, which is a tempo-
ral model that does not consider people explicitly, showing
inferior performance compared to the baseline B1, which
is a non-temporal image classification style model. On the
other hand, baseline model B5, which is a temporal model
that explicitly considers people, performs comparably to the
image classification baseline, in spite of the problems that
arise due to tracking and motion artifacts.

Method Accuracy
B1-Image Classification 46.7
B2-Person Classification 33.1
B3-Fine-tuned Person Classification 35.2
B4-Temporal Model with Image Features 37.4
B5-Temporal Model with Person Features 45.9
B6-Our Two-stage Model without LSTM 1 48.8
B7-Our Two-stage Model without LSTM 2 49.7
Our Two-stage Hierarchical Model 51.1

Table 5: Comparison of the team activity recognition per-
formance of baselines against our model evaluated on the
volleyball dataset.

In both datasets, an observation from the tables is that
while both LSTMs contribute to overall classification per-
formance, having the first layer LSTM (B7 baseline) is rel-

atively more critical to the performance of the system, com-
pared to the second layer LSTM (B6 baseline).

All the reported experiments use max-pooling as men-
tioned above. However, we also tried both sum and average
pooling, but their performance was consistently lower com-
pared to their max-pooling counterpart.

Figure 5: Confusion matrix for the volleyball dataset ob-
tained using our two-stage hierarchical model.

4.3.1 Discussion

Figures 4 and 5 show visualizations of our detected activ-
ities and the confusion matrix obtained for the volleyball
dataset using our two-stage model. From the confusion ma-
trix, we observe that our model generates consistently ac-
curate high level action labels. Nevertheless, our model has
some confusion between set and pass activities, as these ac-
tivities often may look similar.

5. Conclusion

In this paper, we presented a novel deep structured archi-
tecture to deal with the group activity recognition problem.
Through a two-stage process, we learn a temporal repre-
sentation of person-level actions and combine the represen-
tation of individual people to recognize the group activity.
We also created a new volleyball dataset to train and test
our model, and also evaluated our model on the Collective
Activity Dataset. Results show that our architecture can im-
prove upon baseline methods lacking hierarchical consider-
ation of individual and group activities using deep learning.
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