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Bialopetravičiusf, Evangello Floutyg, Chenhui Qiuk, Sabrina Dillm, Anirban Mukhopadhyayn, Pedro Costap, Guilherme Arestao,p,

Senthil Ramamurthys, Sang-Woong Leeq, Aurélio Campilhoo,p, Stefan Zachowm, Shunren Xiak, Sailesh Conjetii,j, Danail
Stoyanovg,h, Jogundas Armaitisf, Pheng-Ann Henge, William G. Macreadyd, Béatrice Cochenerb,a,u, Gwenolé Quelleca,∗
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Abstract

Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not
to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main
motivation for annotating tool usage is to design efficient solutions for surgical workflow analysis, with potential applications
in report generation, surgical training and even real-time decision support. Most existing tool annotation algorithms focus on
laparoscopic surgeries. However, with 19 million interventions per year, the most common surgical procedure in the world is
cataract surgery. The CATARACTS challenge was organized in 2017 to evaluate tool annotation algorithms in the specific context
of cataract surgery. It relies on more than nine hours of videos, from 50 cataract surgeries, in which the presence of 21 surgical
tools was manually annotated by two experts. With 14 participating teams, this challenge can be considered a success. As might
be expected, the submitted solutions are based on deep learning. This paper thoroughly evaluates these solutions: in particular,
the quality of their annotations are compared to that of human interpretations. Next, lessons learnt from the differential analysis of
these solutions are discussed. We expect that they will guide the design of efficient surgery monitoring tools in the near future.

Keywords: cataract surgery, video analysis, deep learning, challenge

1. Introduction

Video recording is a unique solution to collect information
about a surgery. Combined with computer vision and machine
learning, it allows a wide range of applications, including au-
tomatic report generation, surgical skill evaluation and train-
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ing, surgical workflow optimization, as well as warning and
recommendation generation. Key indicators of what the sur-
geon is doing at any given time are the surgical tools that he or
she is using. Therefore, several tool detection techniques have
been presented in recent years (Bouget et al., 2017). The Chal-
lenge on Automatic Tool Annotation for cataRACT Surgery
(CATARACTS)1 was organized in 2017 to evaluate the rel-
evance of these techniques and novel ones in the context of

1https://cataracts.grand-challenge.org
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cataract surgery. This paper introduces the results and main
conclusions of the CATARACTS challenge.

A cataract is an opacification of the crystalline lens, a bicon-
vex eye structure located behind the iris. Normally transparent,
this lens helps to focus light onto the retina and provides ac-
commodation. Cataract develops with aging, general disease,
congenital disorder or injury, and leads to a decrease in vision.
Symptoms include cloudy or blurred vision, faded colors, glare,
poor night vision and double vision. This is the most com-
mon cause of vision loss and blindness in the world: accord-
ing to the World Health Organization, the number of cataract
blind people will reach 40 million in 2025 (Wang et al., 2016).
When vision loss interferes with everyday activities, cataract
surgery is recommended (Kessel et al., 2016). This is the most
frequently performed surgical procedure in many economically
developed countries (Erie, 2014; Wang et al., 2016). Its purpose
is to remove the crystalline lens and replace it with an artificial
intraocular lens (IOL). Physiologically, the crystalline lens is
contained in a bag, which is connected to the ciliary body by
a zonule. Until the early 1960s, the lens was removed with its
bag in a so called “intracapsular” extraction, using cryoextrac-
tion for a better hold of the lens (Krwawicz, 1961): this required
a 180 degree incision around the cornea (Olson, 2018). Later,
it was replaced with “extracapsular” lens removal: the capsu-
lar bag is left inside the eye, allowing the IOL to be implanted
in it. The advent of phacoemulsification definitely revolution-
ized the surgery in terms of safety, efficacy and reproducibil-
ity. Thanks to an ultrasonic handpiece, the crystalline lens is
fragmented into small pieces, which can be removed by suction
through a small incision (Kelman, 1967). Introduced in 1967,
this technique started emerging in routine practice in the 1980s
and improved over time to require less ultrasound energy and
smaller incision size (about 1.8 to 2.2 millimeters today). The
IOL, initially made of rigid polymethylmethacrylate, also re-
quired tremendous evolution in biomaterials to allow insertion
through a small incision, hence the development of foldable
IOLs made of silicone and then of hydrophilic or hydropho-
bic acrylics (Seward, 1997). The result of a smaller incision is
less astigmatism with faster recovery and decrease of postop-
erative complications (Riaz et al., 2006). Recent technological
advances include femtosecond laser-assisted surgery, which au-
tomates the process of crystalline lens fragmentation (Popovic
et al., 2016), and premium IOLs: toric optics for astigmatism
correction, multifocal and extended depth of focus IOLs for
presbyopia correction (de Silva et al., 2016; Cochener et al.,
2018).

Because of its frequency, cataract surgery is the first surgery
that eye surgeons need to master (Kaplowitz et al., 2018 Mar-
Apr): this is one major motivation for developing computer-
aided decision tools for cataract surgery. One way to help sur-
geons during their training period is to analyze their surgical
workflow (Charrière et al., 2017). Through comparisons with
more experienced surgeons, postoperatively, it may help self-
evaluation. Surgical workflow analysis is also useful for work-
flow optimization: by analyzing the workflow of several surg-
eries, and their outcome, lessons can be learnt and best practices
can be identified. The same principle can be applied intraoper-

atively: warnings and recommendations can be generated auto-
matically whenever an unusual or suboptimal workflow pattern
is detected. Surgical workflow optimization and recommenda-
tion generation can be useful for cataract surgery, after a new
technological evolution or for training. It is probably even more
useful for rare surgeries, where training data is more difficult to
collect. So instead of analyzing the surgical workflow directly,
which is specific to each surgery, we propose to focus on tool
usage analysis instead: because tools used in cataract surgeries
are similar to those used in other surgeries, tool usage annota-
tion algorithms can be easily transferred to other surgeries.

In recent years, the number of medical image analysis chal-
lenges has exploded. According to Grand-Challenge2, which
lists those challenges and hosts some of them, two challenges
were organized per year in 2007 and 2008; their number pro-
gressively increased to 15 per year in 2012 and 2013; more
than 20 challenges are now organized every year. The first
challenge organized in the context of ophthalmology was the
Retinopathy Online Challenge in 2009 (Niemeijer et al., 2010):
the goal was to detect signs of diabetic retinopathy in fundus
photographs. Two other challenges were organized on the same
topic: the Diabetic Retinopathy Detection challenge in 20153

and the IDRiD challenge in 2018.4 The detection and segmen-
tation of retinal anomalies in optical coherence tomography im-
ages was the topic of three other challenges: the Retinal Cyst
Segmentation Challenge in 2015,5 RETOUCH6 and ROCC7 in
2017. However, CATARACTS is the only challenge related
to ophthalmic surgery and ophthalmic video analysis. Out-
side the scope of ophthalmology, three other challenges about
surgery video analysis have been organized: EndoVis in 2015
and 2017 (Bernal et al., 2017),8 and M2CAI in 2016 (Twinanda
et al., 2016).9 Although those three challenges are related to
digestive surgery, they share similarities with CATARACTS. In
particular, M2CAI had a sub-challenge on tool detection and
both editions of EndoVis had a sub-challenge on tool segmen-
tation. What makes tool detection particularly challenging in
CATARACTS, compared to EndoVis and M2CAI, probably is
the large range of tools that must be recognized. The reason is
that digestive surgeries addressed in EndoVis and M2CAI rely
on robotic arms with a standardized set of tools, whereas eye
surgeons operate manually and can therefore chose from a wide
selection of tools from several manufacturers.

The remainder of the paper is organized as follows. Section
2 reviews the recent literature about surgical tool analysis. The
setup of the CATARACTS challenge is described in section 3.
Competing solutions are presented in section 4. Results are
reported in section 5. The paper ends with a discussion and
conclusions in section 6.

2https://grand-challenge.org/All_Challenges
3http://www.kaggle.com/c/diabetic-retinopathy-detection
4https://idrid.grand-challenge.org
5https://optima.meduniwien.ac.at/research/challenges
6https://retouch.grand-challenge.org
7https://rocc.grand-challenge.org
8https://endovis.grand-challenge.org
9http://camma.u-strasbg.fr/m2cai2016
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2. Review of Surgical Tool Analysis

Over the past decades, surgical tool analysis mostly relied
on external markers attached to the tools. This includes shape
markers (Casals et al., 1996), color markers (Ko et al., 2005),
optical markers (Krupa et al., 2003), acoustic markers (Chmarra
et al., 2007) and RFID systems (Miyawaki et al., 2009). With
the progress of computer vision, solutions for vision-based and
marker-less tool analysis have emerged. Bouget et al. (2017)
thoroughly reviewed the literature of this domain until 2015;
recent trends are discussed hereafter.

2.1. Clinical Applications

In terms of applications, it should be noted that most solu-
tions were developed to monitor endoscopic videos for min-
imally invasive surgeries, with or without robotic assistance
(Sarikaya et al., 2017; Ross et al., 2018; Wesierski and Jezier-
ska, 2018; Du et al., 2018; Allan et al., 2018). Other imaging
modalities include:

• microscopy, for neurosurgery (Leppänen et al., 2018), reti-
nal surgery (Alsheakhali et al., 2016b; Rieke et al., 2016a;
Kurmann et al., 2017; Laina et al., 2017) and cataract
surgery (Al Hajj et al., 2017a),

• OCT, (Gessert et al., 2018), for ophthalmic microsurgery
(Zhou et al., 2017; Keller et al., 2018),

• X-rays, for endovascular surgery (Chang et al., 2016) and
face surgery (Kügler et al., 2018),

• ultrasound (Rathinam et al., 2017), for intraplacental inter-
ventions (Garcı́a-Peraza-Herrera et al., 2016),

• and RBGD, for orthopedic surgery (Lee et al., 2017b).

2.2. Computer Vision Tasks

In terms of computer vision tasks, multiple problems have
been addressed in the recent literature. These tasks can be cat-
egorized according the precision of the desired outputs. The
finest task is tool segmentation (Bodenstedt et al., 2016 Feb-
Mar; Garcı́a-Peraza-Herrera et al., 2016, 2017; Attia et al.,
2017; Lee et al., 2017b; Zhou et al., 2017; Ross et al., 2018;
Su et al., 2018). This includes multi-label tool segmentation for
articulated tools (Laina et al., 2017): each tool part is associ-
ated with one label. A coarser task is tool detection or localiza-
tion (Chang et al., 2016; Leppänen et al., 2018): the goal typi-
cally is to detect the tool tip (Furtado et al., 2016; Chen et al.,
2017; Czajkowska et al., 2018) or the tool edges (Agustinos and
Voros, 2015; Chen et al., 2017). For articulated instruments,
the goal is also to detect the tool parts (Wesierski and Jezier-
ska, 2017 Aug-Sep, 2018) or the articulations between them
(Laina et al., 2017; Du et al., 2018). For flexible instruments,
the goal is also to detect the tool centerline (Chang et al., 2016).
Tool detection generally is an intermediate step for tool track-
ing, the process of monitoring tool location over time (Du et al.,
2016; Rieke et al., 2016a; Lee et al., 2017b; Zhao et al., 2017;
Czajkowska et al., 2018; Ryu et al., 2018; Keller et al., 2018),

and pose estimation, the process of inferring a 2-D pose (Rieke
et al., 2016b; Kurmann et al., 2017; Alsheakhali et al., 2016b;
Du et al., 2018; Wesierski and Jezierska, 2018) or a 3-D pose
(Allan et al., 2018; Gessert et al., 2018) based on the location of
tool elements. Tasks associated with tool detection also include
velocity estimation (Marban et al., 2017) and instrument state
recognition (Sahu et al., 2016a). All the above tasks are directly
useful to the surgeon: they can be used for improved visualiza-
tion, through augmented or mixed reality (Frikha et al., 2016
Nov-Dec; Bodenstedt et al., 2016 Feb-Mar; Lee et al., 2017b,a).

Finally, the coarsest task is tool presence detection: the goal
is to determine which tools are present or active in each frame
of the surgical video (Sahu et al., 2017; Primus et al., 2016; Hu
et al., 2017; Sarikaya et al., 2017; Twinanda et al., 2017; Wang
et al., 2017; Al Hajj et al., 2017a; Jin et al., 2018). This is the
task addressed in this paper. Unlike finer tasks, the usefulness
of this task is indirect: it is mainly used to analyze the surgical
workflow (Twinanda et al., 2017).

2.3. Computer Vision Algorithms

Various computer vision algorithms have been proposed to
address these tasks. Until early 2017, tool detection relied
heavily on handcrafted features, including Gabor filters (Cza-
jkowska et al., 2018), Frangi filters (Agustinos and Voros, 2015;
Chang et al., 2016), color-based features (Primus et al., 2016;
Rieke et al., 2016a), histograms of oriented gradients (Rieke
et al., 2016a; Czajkowska et al., 2018), SIFT features (Du et al.,
2016), ORB features (Primus et al., 2016) and local binary pat-
terns (Sahu et al., 2016a). For tool segmentation, similar fea-
tures have been extracted within superpixels (Bodenstedt et al.,
2016 Feb-Mar). These features were processed either by a
machine learning algorithm, such as a support vector machine
(Primus et al., 2016; Wesierski and Jezierska, 2018), a random
forest (Bodenstedt et al., 2016 Feb-Mar; Rieke et al., 2016a,b)
or AdaBoost (Sahu et al., 2016a), or by a parametric model,
such as a generalized Hough transform (Du et al., 2016; Frikha
et al., 2016 Nov-Dec; Czajkowska et al., 2018) or a B-spline
model (Chang et al., 2016). Note that template matching tech-
niques have also been used to deal with articulated instruments
(Ye et al., 2016; Wesierski and Jezierska, 2018).

Since 2017, most tool analysis solutions rely on deep learn-
ing. For tool detection, convolutional neural networks (CNNs)
were used to recognize images patches containing tool pixels
(Alsheakhali et al., 2016a; Chen et al., 2017; Zhao et al., 2017).
The use of region proposal networks was also investigated
(Sarikaya et al., 2017; Jin et al., 2018). Several CNN architec-
tures were experimented for tool segmentation: fully convolu-
tional networks (Garcı́a-Peraza-Herrera et al., 2016; Zhou et al.,
2017), U-net (Ross et al., 2018) or custom encoder/decoder
CNN architectures (Garcı́a-Peraza-Herrera et al., 2017; Attia
et al., 2017; Laina et al., 2017). The use of generative adver-
sarial networks was proposed to train or pre-train segmentation
CNNs: a tool segmentation CNN (Ross et al., 2018) and a spec-
ular highlight segmentation and removal CNN (Funke et al.,
2018). For pose estimation, regression CNNs were proposed
(Du et al., 2018; Gessert et al., 2018; Kügler et al., 2018), which
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eliminates the need to explicitly localize tools as an intermedi-
ate step. Note that multi-task CNNs have been designed: Laina
et al. (2017) jointly segments the tools and detects the joints be-
tween tool parts, Kurmann et al. (2017) jointly recognizes the
tools and detects the joints between tool parts, Du et al. (2018)
jointly detects the joints between tool parts and estimates 2-D
poses, Jin et al. (2018) and Hu et al. (2017) jointly determines
tool presence and tool localization. To take time information
into account, proposed solutions sometimes took advantage of
the optical flow (Czajkowska et al., 2018) or relied on temporal
filtering techniques, such as a Kalman filter (Ryu et al., 2018)
or a recurrent neural network (RNN) (Attia et al., 2017; Mar-
ban et al., 2017). This is typically useful for tool tracking (Chen
et al., 2017; Marban et al., 2017; Ryu et al., 2018; Czajkowska
et al., 2018), but it was also used to speed up tool segmentation
(Garcı́a-Peraza-Herrera et al., 2016) or to improve tool presence
detection (Al Hajj et al., 2017a).

2.4. Tool Presence Detection Pipeline

Nowadays, tool presence detection algorithms also rely on
CNNs (Al Hajj et al., 2017b; Hu et al., 2017; Kurmann et al.,
2017; Sahu et al., 2017; Twinanda et al., 2017) or CNN en-
sembles (Wang et al., 2017). These CNNs accept full video
frames as input and compute a probability of presence for each
surgical tool in the input frame. These CNNs are generally
trained through transfer learning (Yosinski et al., 2014; Litjens
et al., 2017): image classification models, typically pre-trained
on ImageNet10, are fine-tuned on individual frames extracted
from training videos. This strategy was followed by the winners
of the M2CAI tool detection sub-challenge (Raju et al., 2016;
Sahu et al., 2016b; Twinanda et al., 2017; Zia et al., 2016).
Once CNNs are trained, their predictions can be improved us-
ing a temporal model. In the simplest scenario, each prediction
signal are smoothed by a usual temporal filter (e.g. a median
filter) to compensate for short-term occlusion or image quality
problems. Whenever long-term relationships between events
are important, a RNN can be used instead (Yao et al., 2015;
Donahue et al., 2017). CNN+RNN models have thus been used
for surgical workflow analysis in endoscopy videos (Twinanda
et al., 2017; Jin et al., 2016; Bodenstedt et al., 2017). Given
the correlation between surgical workflow and tool usage, such
an approach also seems relevant for tool usage annotation in
surgery videos (Mishra et al., 2017; Al Hajj et al., 2018).

3. Challenge Description

3.1. Video Collection

The challenge relies on a dataset of 50 videos of phacoemul-
sification cataract surgeries performed in Brest University Hos-
pital between January 22, 2015 and September 10, 2015.
Reasons for surgery included age-related cataract, traumatic
cataract and refractive errors. Patients were 61 years old on
average (minimum: 23, maximum: 83, standard deviation: 10).

10www.image-net.org

There were 38 females and 12 males. Informed consent was
obtained from all patients. Surgeries were performed by three
surgeons: a renowned expert (48 surgeries), a one-year experi-
enced surgeon (1 surgery) and an intern (1 surgery). Surgeries
were performed under an OPMI Lumera T microscope (Carl
Zeiss Meditec, Jena, Germany). Videos were recorded with a
180I camera (Toshiba, Tokyo, Japan) and a MediCap USB200
recorder (MediCapture, Plymouth Meeting, USA). The frame
definition was 1920x1080 pixels and the frame rate was ap-
proximately 30 frames per second. Videos had a duration of
10 minutes and 56 s on average (minimum: 6 minutes 23 s,
maximum: 40 minutes 34 s, standard deviation: 6 minutes 5
s). In total, more than nine hours of surgery have been video
recorded.

3.2. Training and Test Set Separation

The dataset was divided evenly into a training set (25 videos)
and a test set (25 videos). Division was made in such a way
that each tool appears in the same number of videos from both
sets (plus or minus one). No validation dataset was provided:
participants were given the responsibility to divide the training
set into a learning subset and a validation subset. Ground truth
was collected similarly for training and test videos, as described
hereafter.

3.3. Tool Usage Annotation

All surgical tools visible in microscope videos were first enu-
merated and labeled by the surgeons: a list of 21 tools was ob-
tained (see Fig 1). Then, the usage of each tool in videos was
annotated independently by two non-clinical experts. A tool
was considered to be in use whenever it was in contact with the
eyeball. Therefore, a timestamp was recorded by both experts
whenever one tool came into contact with the eyeball, and also
when it stopped touching the eyeball. Up to three tools may
be used simultaneously: two by the surgeon (one per hand) and
sometimes one by an assistant. Annotations were performed
at the frame level, using a web interface connected to an SQL
database. Finally, annotations from both experts were adju-
dicated: whenever expert 1 annotated that tool A was being
used, while expert 2 annotated that tool B was being used in-
stead of A, experts watched the video together and jointly de-
termined the actual tool usage. However, the precise timing of
tool/eyeball contacts was not adjudicated. Therefore, a proba-
bilistic reference standard was obtained:

• 0: both experts agree that the tool is not being used,

• 1: both experts agree that the tool is being used,

• 0.5: experts disagree.

Inter-rater agreement, before and after adjudication, is reported
in Table 1. A chord diagram11 illustrating the co-occurrence of
tools in training video frames is reported in Fig. 2.

11http://mkweb.bcgsc.ca/tableviewer/
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(a) biomarker (b) Charleux cannula (c) hydrodissection
cannula

(d) Rycroft cannula (e) viscoelastic can-
nula

(f) cotton

(g) capsulorhexis cys-
totome

(h) Bonn forceps (i) capsulorhexis for-
ceps

(j) Troutman forceps (k) needle holder (l) irrigation / aspira-
tion handpiece

(m) phacoemulsifier
handpiece

(n) vitrectomy hand-
piece

(o) implant injector

(p) primary incision
knife

(q) secondary incision
knife

(r) micromanipulator

(s) suture needle (t) Mendez ring (u) Vannas scissors

Figure 1: Surgical tools annotated in videos

3.4. Performance Evaluation of a Submission

Tool usage predictions submitted by a participant for test
videos were evaluated as follows. A figure of merit was first
computed for each tool label T : the annotation performance
for tool T was defined as the area A(T ) under the receiver-
operating characteristic (ROC) curve (see Fig. 5). This curve
was obtained by varying a cutoff on the confidence level for
tool T provided by the participant for each frame in the test set.
Frames associated with a disagreement between experts (refer-
ence standard = 0.5 for tool T ) were ignored when computing
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biomarker 0.835 0.835 0.0168 %
Charleux cannula 0.949 0.963 1.79 %
hydrodissection cannula 0.868 0.982 2.43 %
Rycroft cannula 0.882 0.919 3.18 %
viscoelastic cannula 0.860 0.975 2.54 %
cotton 0.947 0.947 0.751 %
capsulorhexis cystotome 0.994 0.995 4.42 %
Bonn forceps 0.793 0.798 1.10 %
capsulorhexis forceps 0.836 0.849 1.62 %
Troutman forceps 0.764 0.764 0.258 %
needle holder 0.630 0.630 0.0817 %
irrigation/aspiration handpiece 0.995 0.995 14.2%
phacoemulsifier handpiece 0.996 0.997 15.3 %
vitrectomy handpiece 0.998 0.998 2.76 %
implant injector 0.980 0.980 1.41 %
primary incision knife 0.959 0.961 0.700 %
secondary incision knife 0.846 0.852 0.522 %
micromanipulator 0.990 0.995 17.6 %
suture needle 0.893 0.893 0.219 %
Mendez ring 0.941 0.953 0.100 %
Vannas scissors 0.823 0.823 0.0443 %

Table 1: Statistics about tool usage annotation in the CATARACTS dataset. The
first two columns indicate inter-rater agreement (Cohen’s kappa) before and
after adjudication; the largest changes are in bold. The last column indicates
the prevalence of each tool in the training subset, ignoring the frames where
experts disagree about the usage of that tool, even after adjudication.

the ROC curve. Then, a global figure of merit was defined: it
was simply defined as the mean A(T ) value over all tool labels
T . The evaluation script was made publicly available at the be-
ginning of the challenge.

3.5. Rules of the Challenge

Training videos, with their tool usage annotations, as well as
test videos, without their annotations, were released on April
1, 2017. The challenge has been open for submissions during
eight months, from April 1, 2017 to November 30, 2017. In
order to stimulate competition and to explore more solutions,
participants were allowed to submit multiple solutions through-
out this period. However, two restrictions were imposed on
re-submissions:

1. Each submission was required to be substantially differ-
ent from the previous ones. Typically, a first submission
may consist of a CNN only, a second one may consist of
an ensemble of CNNs, and third one may include a tem-
poral sequencer. However, submitting the same algorithm
with different meta-parameters was not allowed. This rule
was fixed to minimize the risk of influencing the solution’s
behavior with test data. To allow verification of this rule
by the organizers, a technical report was required for each
submission and re-submission.
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Figure 2: Chord diagram illustrating tool co-occurrence in training video frames. This figure shows, for instance, that the phacoemulsifier handpiece is used in
74,000 frames and that, in 78,5% of these frames, it is used in conjunction with the micromanipulator.

2. Technical reports and performance scores were imme-
diately published on the challenge website and no re-
submission was evaluated for a week. This rule was fixed
to balance the inequities between teams submitting mul-
tiple solutions and those submitting only once: the latter
can benefit from experience gained by the former.

For each team, the solution with maximal performance among
all submissions (if more than one) was retained to compile the
final team ranking. Two submissions were excluded from the
establishment of this ranking by virtue of the one week waiting
rule: the scheduled evaluation date occurred after the challenge
closing date. However, they are discussed in the following sec-
tion anyway. Solutions submitted by the organizers (LaTIM)

are not included in the team ranking, but are also discussed in
this paper.

4. Competing Solutions

Fourteen teams competed in this challenge. Their solutions,
as well as the organizers’ solution, are described hereafter. To
allow comparisons between these solutions, key elements are
reported in Tables 2, 3, 4, 5 and 6.

4.1. VGG fine-tuning
The VGG fine-tuning solution uses a CNN with weights pre-

trained on the ImageNet dataset. The base network is VGG-
16 (Simonyan and Zisserman, 2015). The last fully connected
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layer, namely ‘fc8’, was changed to have twenty-one output
neurons, each representing the likelihood that one tool is be-
ing used by the surgeon in the input image. The last two fully
connected layers, namely ‘fc7’ and ‘fc8’, were fine-tuned using
the CATARACTS training dataset. The CNN processes images
with 288×288 pixels. It was trained using a stochastic gradient
descent with a learning rate of 0.001 and a momentum of 0.9.
The mini-batch size was set to 48 and the number of epochs to
80. A weighted loss function was used: a weight of one was
assigned to label 0 (tool not being used) and a weight of thirty
was assigned to label 1 (tool in use). No random distortions are
applied to input images during training and inference.

4.2. LCCV-Cataract

The LCCV-Cataract solution relies on an Inception-v3 CNN
(Szegedy et al., 2016) pre-trained on ImageNet. The major dif-
ference with other solutions is that a multi-class classifier was
trained (each image has exactly one label), rather than a multi-
label classifier (each image may have zero, one or multiple
labels). Twenty-two mutually exclusive classes were defined:
each of the first 21 classes predicts the usage of one tool and
the 22nd class predicts the absence of tool usage. For compat-
ibility reasons, all video frames associated with multiple tools
in the CATARACTS dataset were ignored during training. The
CNN processes images with 299×299 pixels. It was fine-tuned
with a learning rate of 0.01 for several thousand iterations with
cross-entropy loss. During inference, the purpose of the 22nd

class it to lower the probability of the other 21 classes when no
tool appears to be in use. No random distortions are applied to
input images during training and inference.

4.3. AUGSQZNT

The AUGSQZNT solution extends SqueezeNet, a
lightweight CNN (Iandola et al., 2016) with weights pre-
trained on ImageNet. The proposed architecture starts with
three blocks of convolutional layers and then splits into three
parts: one part for the ‘cannula’ set of labels, one part for
the ‘forceps’ set and one part for the rest. The ‘forceps’ split
of the network uses softmax activations while the other two
use sigmoid activations. For validation, 5 complete videos
and selected frames containing approximately 20% of frames
labelled biomarker, needle holder, vitrectomy handpiece and
Vannas scissors from 3 videos were kept aside from training.
This was to ensure that each label has approximately 15-20%
representation in the validation set. The frames were extracted
at 10 frames per second although for rare classes, the frames
were duplicated up to 50 times after extraction. Afterwards, all
frames were augmented using vertical and horizontal flipping
and randomly cropping 70%. The CNN was trained using a
binary cross entropy loss function with a 80:10:10 weight ratio
assigned to each network split. The Adam optimizer (Kingma
and Ba, 2015) was used with a learning schedule starting with
the learning rate of 0.01 and subsequently dividing by 10 after
every 3 epochs with no improvement in validation loss. During
inference, 5-fold test time augmentation is performed by taking
the center, top left, top right, bottom right and bottom left

patches from each frame in the test dataset. The predictions are
averaged across the 5 patches for each frame.

4.4. SurgiToolNet

The SurgiToolNet solution is a deep learning network based
on DenseNet-161 (Huang et al., 2017). The DenseNet-161
model was pre-trained on ImageNet to accelerate the training
process. To use the DenseNet-161 network as a multi-label
classifier, a Euclidean loss layer was plugged into the end of the
network to compute the sum of squares of differences between
the predicted output and the ground truth input. The CNN pro-
cesses images with 224 × 224 pixels. It was fine-tuned using
stochastic gradient descent with a momentum of 0.9. The ini-
tial learning rate was set to 0.001, and was divided by 10 after
50,000 iterations. In the deployment process, a binary classifi-
cation layer was added at the end of this network: this layer is
used to threshold the outputs of the fully connected layer and
classify them into binary labels ∈ {0, 1}, indicating whether or
not each tool is being used by the surgeon in the current frame.

4.5. CRACKER

CRACKER uses a frame-wise tool detector, based on a
ResNet-34 (He et al., 2016) pre-trained on ImageNet, followed
by field knowledge-based temporal filtering. The optimizer is
the SGDR (Loshchilov and Hutter, 2017) and the loss function
is the categorical cross entropy log loss.

Frame-wise tool detector: The model was fine-tuned with a
1:2 subsample of the CATARACTS dataset rescaled to 128 ×
128 pixels. First, the top of the network was trained for a fixed
number of epochs. Then, the learning rate was reduced by 1/3
at each 1/3 of the network depth. Finally, the entire network
was trained until the cross entropy log loss stagnated in the val-
idation set. Test predictions are the result of the average of the
model’s output over 4 different test-time augmented versions of
the frames.

Knowledge-based temporal filtering: First, the temporally
sorted predictions are median-filtered with a sliding filter of
size 11. For the irrigation/aspiration handpiece, phacoemul-
sifier handpiece and implant injector, the filter size was set to
101 instead. All signals are then processed based on the surgi-
cal procedure: 1) the irrigation/aspiration and vitrectomy hand-
pieces (IA, V, respectively) usually proceed the phacoemulsi-
fier because the latter is used for lens destruction; 2) the im-
plant injector can never come before IA or V pieces since the
implant can only be injected into the eye once the damaged
lens has been removed and 3) the Rycroft cannula should not
come before IA or V since it is used for refilling the lens in the
end of the surgery. With that in mind, the first occurrence of
probabilityIA > 0.5 or probabilityV > 0.5 is used for zeroing
erroneous predictions of the above-mentioned tools.

4.6. MIL+resnet

The main contribution of the MIL+resnet solution is the de-
coupling of the initial task into a binary tool detection stage fol-
lowed by a 21-class classification to determine the tools present
on each given frame. The binary tool detection model is based
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on the Multiple-Instance Learning (MIL) framework (Quellec
et al., 2017a). The MIL assumption was interpreted in this con-
text as follows: image patches are considered as instances, a
patch containing (part of) a tool is considered as a positive in-
stance, and a patch with no signs of tool presence is considered
as a negative instance. Accordingly, a given image is consid-
ered as a bag containing instances. The sole presence of a pos-
itive instance is enough to declare the associated bag as con-
taining a tool, whereas in order for a frame/bag to be declared
as not containing tools, it must be composed only of negative
instances.

In this stage, a standard CNN architecture was employed,
namely the Inception-v3 network, with initial weights pre-
trained on the ImageNet dataset. In order to deal with patches,
the architecture was modified to perform patch-level classifi-
cation given the full input image. The deeper layers of the
Inception-v3 network were discarded, since the receptive field
of each layer grows as the network gets deeper. By discard-
ing deeper layers of the network, the receptive field of the out-
put layer can be effectively reduced. The predicted patch labels
must then be combined to produce an image-level prediction. In
order to follow the standard MIL assumption, patch predictions
are merged into a single prediction by means of a max-pooling
function.

The binary tool detector was trained on a binarized tool/no-
tool version of the provided ground-truth. The resulting model
was applied on the test set to retain frames that contained tools.
The predictions on test set were temporally smoothed with a
trimmed mean filter to add some robustness. Afterwards, a
ResNet CNN was trained only on tool-containing frames, in
order to learn to classify which were the present tools. This
second stage was considered as a standard 21-class multi-label
classification problem. Finally, the trained model was applied
only to test frames that had been predicted as containing tools to
decide which tools were present at each moment on the videos
from the test set.

4.7. ZIB-Res-TS

The framework of the ZIB-Res-TS comprises of three main
parts: stratification of the data, a classification model and tem-
poral smoothing as a post-processing step. Since multiple tools
can be visible in an image and tool co-occurrence frequency
varies within the dataset, label-set sampling (Sahu et al., 2017)
was applied to the data to reduce the bias caused by highly
frequent tool co-occurrences. This approach relies on strat-
ified sampling based on the co-occurrences of tools as dis-
joint classes. The model consists of ResNet-50 which was
pre-trained on ImageNet and fine-tuned on the CATARACTS
dataset by adding a global average pooling and a fully con-
nected layer on top. The task was formulated as a multi-label
classification problem with 22 output units, including a no-tool
class (i.e. background) as described by Sahu et al. (2016b). The
network was trained using an Adam optimizer with a learning
rate of 0.001 for 25 epochs. Assuming that tool usage transi-
tions are smooth, linear temporal smoothing (Sahu et al., 2017)
with a window of five frames is applied during inference in or-

der to reduce false positives by suppressing stand alone detec-
tions.

4.8. RToolNet

RToolNet is a fine-tuned 50-layer residual network. After
pre-training on ImageNet, the first 31 convolutional layers were
frozen and only the remainder of the network was fine-tuned on
the CATARACTS dataset using a decaying learning rate sched-
ule. Furthermore, the approach makes heavy use of data aug-
mentation to alleviate the strong correlation that is natural be-
tween video frames. The network was trained using a stochas-
tic gradient descent with an initial learning rate of 0.05 and a
momentum of 0.9. In the second submission, a weighted loss
function was introduced which places more emphasis on train-
ing examples from underrepresented classes. This improved re-
sults slightly but also made the training more sensitive to inher-
ent randomness, such as the choice of initial weights or training
example order. We assume this to be the reason for the strong
performance decrease observed for one tool between both sub-
missions and note that this problem could be mitigated using an
ensemble of networks trained with different random seeds.

4.9. CDenseNet

CDenseNet is based on DenseNet-169, and the last fully con-
nected layer consists of 21 units for predicting the probability
of the corresponding tool usage. To overcome the imbalance of
the dataset, besides extracting 6 frames per second, more im-
ages were extracted for the rare tools, and a weighted binary
softmargin loss function was adopted after converting all ‘0’ la-
bels in ground truth to ‘-1’. By this way, better performance
was obtained for the rare tools, such as biomarker and Vannas
scissors. To train the network, a stochastic gradient descent
was used with a decreasing learning rate, initialized to 0.05,
and a momentum of 0.9. Unlike other solutions, the CNN was
not pre-trained on ImageNet: all weights were initialized ran-
domly following a Gaussian distribution. Efficient DenseNet
implementation (Pleiss et al., 2017) in PyTorch was used for
accelerating the training procedure and improving the parame-
ter utilization.

4.10. TUMCTNet

In the TUMCTNet solution, Inception-v4 was suitably mod-
ified and fine-tuned by introducing independent sigmoids as
predictors for tool usage and by increasing the input size to
640 × 360 pixels to maintain the aspect ratio of the surgical
video. To handle imbalance within multi-label settings, the co-
occurrence of tools was considered for selecting the samples
used for training: the label-set stratification proposed by Sahu
et al. (2017) was used, which resulted in 46 label-sets. In addi-
tion to balancing the data-set, such an approach also exploits the
relationship between tools during the surgery. During the train-
ing of the network, data-augmentation including limited ran-
dom rotation (±10◦), horizontal flipping, random scaling and
center-cropping was used. Training relied on on a stochastic
gradient descent with a learning rate of 0.001 and a momentum
of 0.9. To improve temporal consistency of the results, temporal
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weighted averaging is performed during inference. An ensem-
ble of two independently trained models is also employed to
improve predictions.

4.11. CatResNet

The CatResNet model uses the 152-layer ResNet architecture
for multi-label frame classification. The network was initial-
ized with weights pre-trained on the ImageNet dataset and was
further fine-tuned using the CATARACTS training videos (22
videos for training and 3 for validation). The videos were sub-
sampled at 3 frames per second and half of the frames that do
not feature any tool were discarded to match the frequency of
the most common tool class, although the classes were not bal-
anced further. The output of the network is a fully connected
layer with 21 nodes with sigmoid activations and it was ini-
tialized with a Gaussian distribution with mean 0 and standard
deviation 0.01 to be trained from scratch. During training, the
input frames were re-shaped to 224 × 224 pixels and a random
horizontal flip and random rotation within 25 degrees with mir-
ror padding was performed to augment the data. The network
was trained using stochastic gradient descent with a mini-batch
of 8, a learning rate of 0.0001 and a momentum of 0.9 for a to-
tal of 10,000 iterations. For the first submission of this model,
the predictions rely on the current frame alone and do not incor-
porate information from any other previous or following frame.
A second submission was made which incorporates temporal
smoothing as a post-processing step on the CNN predictions
using a centered moving average kernel of size 5, however it
does not achieve significantly better results.

4.12. TROLIS

The TROLIS solution differs from the competitors in two
major aspects: (i) a classical computer vision algorithm is used
to detect the biomarker (the rarest tool), and (ii) separate neural
networks are trained for the rare tools and the rest. The train-
ing set was pruned first: the frames with video artifacts (tear-
ing) were discarded, each 3 frames were averaged, and pixel-
wise similar frames were discarded. The tool categories were
split into two: six rare tools and the remaining (regular) tools.
For the regular tool identification, the average output of two
Resnet-50 networks on frames resized to 256 × 256 pixels and
one Resnet-50 network on frames resized to 512 × 512 pix-
els was used. These networks were optimized using stochastic
gradient descents. For the rare tools, a new dataset was cre-
ated: it consists of 3,000 (respectively 2,500) frames with (re-
spectively without) rare tool labels. In addition to these frames
from the training set, 1,200 frames from the test set, obtained by
performing a forward pass using the three Resnet-50 networks,
were used as negative samples. One of the networks was fine-
tuned on this new dataset, and its output is used for rare tool
identification. For the rarest tool (biomarker) detection, a clas-
sical computer vision algorithm is applied: it works by finding
black blobs (tip of the marker) and white blobs (bulk of the
marker) in each frame. It is assumed that the Mendez ring only
appears in videos where the biomarker is present. Similarly, it
is assumed that the needle holder only appears in videos with

suture needle. Moreover, the first and last 0.5% frames of ev-
ery test video is clipped. Finally, predictions are time averaged
with a window of 45 frames.

4.13. CUMV
The CUMV solution relies on an ensemble of two CNNs with

weights pre-trained on ImageNet: ResNet-101 and DenseNet-
169. Each network takes as input a single frame from the sur-
gical video, resized to 224 × 224 pixels, and outputs label pre-
dictions for the current frame. Both networks are trained inde-
pendently with a stochastic gradient descent, using the cross-
entropy loss. The learning rate was set to 0.001 for 6,000 itera-
tions and then to 0.0001 for 5,000 iterations. During inference,
a gate function (Hu et al., 2017) is used to combine the results
of these two networks, which calculates the inner product of the
normalized prediction confidences for each kind of tool.

4.14. DResSys
DResSys, developed at D-Wave, uses an ensemble of deep

CNN networks to make predictions on individual video frames
and then smooths these predictions across frames with a
Markov random field. To extract video frames for training of
the CNN ensemble, all frames within videos containing the rare
tools (e.g. biomarker, Vannas scissors) were used, but in parts
of the video with the most common tools, frames were sampled
at a rate of only 6 frames/sec. Further, 40,000 frames were ran-
domly selected at uniform rate from amongst training frames
that have no tools. This process provided a total of ∼100,000
training images.

Frame-level predictors: In the first two submissions a single
50-layer Residual Network was trained and in subsequent sub-
missions Inception-v4 and NASNet-A (Zoph et al., 2018) were
trained in addition to ResNet. All parameters were initialized
from pre-trained ImageNet models. Images of 540× 960 pixels
are used for ResNet-50 and Inception-v4, but since NASNet-A
is a much larger network requiring much greater GPU memory,
270× 480 images are used for this model. The final submission
also uses one additional NASNet-A architecture with a larger
image size of 337 × 600 pixels at input. The training data was
augmented by randomly horizontally flipping and cropping im-
ages. All networks were trained with the Adam optimizer us-
ing a sigmoid cross-entropy loss except for the 337 × 600-pixel
NASNet-A model that used a weighted sigmoid cross entropy
loss. Training ran for at most 13 epochs with a batch size of 4.
The learning rate for each network was chosen using cross val-
idation. The prediction probability of each trained frame-level
CNN is aggregated using a weighted geometric mean in which
the weights were set using a grid search over the validation set.

Temporal smoothing: Several smoothing approaches were
explored to capture the dependence of tool labels across con-
secutive frames. The first submissions were based on a sim-
ple median filtering method and the last submission includes
a Markov random field (MRF) model. The MRF model pro-
vides a probability distribution across the time-dependent label
space. Assume that yyy = {y1, y2, . . . , yT } represents the binary
label vector for a given tool where yt = 1/0 indicates the pres-
ence/absence of the tool in the tth frame. The proposed MRF
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model has a chain-like structure and defines a conditional prob-
ability distribution p(yyy|xxx) ∼ exp

(
−E(yyy; xxx)

)
for the label vector yyy

given the video xxx using an energy function E(yyy; xxx) given by

E(yyy; xxx) =

T∑
t=1

a(st)yt +
w
2

T∑
t=1

∑
n∈N(t)

ytyn , (1)

where N(t) = {t − 19, t − 17, . . . , t + 19} represents the set of
neighboring nodes for the tth frame, and provides long-range
temporal connectivity. In Eq. (1), a(st) is the bias for the tth

frame’s label which is computed by shifting and scaling the
output of the ensemble frame-level prediction score st at frame
t. The scalar coupling parameter w in Eq. (1) enforces label
agreement between neighboring frames. The w parameter and
the shift and scale parameters of the linear map a(st) were all
set by a grid search and are shared for all the 21 tool categories.
The MRF model, p(yyy|xxx), represents the joint probability distri-
bution for all the labels in the temporal domain for a tool. Given
this model, the marginal distribution p(yt = 1|xxx) is computed
using a mean-field approximation (Jordan et al., 1999) and the
resultant marginal probability is used as the prediction score for
the tth frame. Lastly, in order to process videos efficiently, the
MRF model is formed in smaller segments of length ∼20,000
frames.

4.15. LaTIM (organizers)

The LaTIM solution relies on an ensemble of CNNs, whose
outputs are processed by an ensemble of RNNs. Convolutional
and recurrent networks are trained sequentially using a novel
boosting technique (Al Hajj et al., 2018). In a first submission,
the CNN ensemble consists of one Inception-v4, one Inception-
ResNet-v2 and one o O network (Quellec et al., 2017b); the
RNN ensemble consists of one LSTM (Hochreiter and Schmid-
huber, 1997) and one GRU (Cho et al., 2014) network. In a
second submission, a single CNN is used: NASNet-A. A differ-
ent ensemble of RNNs, consisting of three LSTMs, is obtained.
All networks are trained using the root mean square propaga-
tion algorithm. One major difference between both submissions
is that RNNs are bidirectional in the first submission and uni-
directional in the second, thus allowing online video analysis.
Another difference is that a median filter is applied to each pre-
diction signal in the second submission, for short-term temporal
smoothing, whereas the RNNs are only used for long-term tem-
poral analysis by design.

5. Results

A total of 27 submissions from 14 teams was received dur-
ing the challenge period. Additionally, the organizers (LaTIM)
submitted two solutions. A timeline of all these submissions is
reported in Fig. 3. In order to establish a team ranking, the solu-
tion with maximal average AUC from each team was retained.
Note that two solutions were evaluated after the challenge pe-
riod, in virtue of the one week waiting rule: they were not used
to establish the team ranking (see section 3.5). The leaderboard
is reported in Table 7, together with the average AUCs and the
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Figure 3: Timeline of solution evaluation — the gray vertical line indicates
the challenge closing date. Evaluation dates and submission dates sometimes
differed in virtue of the one week waiting rule.

detailed per-tool AUCs published on the CATARACTS web-
site. This table also reports 95% confidence intervals (CIs) on
the average AUCs, which were computed as follows: 1) CIs
on the per-tool AUCs were computed using DeLong’s method
(DeLong et al., 1988), 2) their radii were then combined using
the root mean square, assuming independence between tools.
Each CI was used for a single comparison: is the correspond-
ing solution significantly better than the following solution in
the ranking? Results of this test are also reported in Table 7.

Per-tool AUCs are summarized in Fig. 4 using boxplots. Fig-
ure 4 (a) summarizes the performance of each solution: it ap-
pears that some solutions can detect all tools equally well while
others fail for a few tools in particular. Figure 4 (b) summarizes
how well each of these tools is detected by competing solu-
tions: it appears that the Charleux cannula, the biomarker, the
suture needle, the needle holder and the viscoelastic cannula are
particularly challenging. On the contrary, the phacoemulsifier
handpiece and the capsulorhexis cystotome are detected well by
all solutions. ROC curves for simple and challenging tools are
reported in Fig. 5.

For a deeper understanding of how each of these solutions
analyze surgery videos, typical examples of temporal prediction
signals are given in Fig. 6. One can easily notice which solu-
tions include temporal smoothing techniques as post-processing
steps (see Table 5). Another observation we can make is that the
occurrence of false alarms is highly correlated in these signals:
this is particularly clear in Fig. 6 (b).

Given the very good classification performance achieved by
the top-raking solutions, we wondered whether or not they
achieved human-level performance. To answer this question,
we evaluated the competing solutions against the annotations of
one expert only, before adjudication (see Fig. 7). We observed
that the other human grader is always better than all compet-
ing solutions, in the sense that his sensitivity/specificity pair is
above all ROC curves. A single exception was observed: for
cotton usage detection, the DResSys algorithm is slightly better
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team training data selection validation set
DResSys 6 frames per second 3 videos

LaTIM 30 frames per second 2 videos
CUMV 6 frames per second 5 videos

TROLIS frequent tools (3 CNNs): torn frame removal, adaptive frame selection based on pixel differences 3 videosrare tools (5 CNNs): 4200 negative frames (including 1200 test frames), 2500 positive frames
CatResNet 3 frames per second 3 videos

TUMCTNet 0.8 frames per seconds 3 videos
CDenseNet 5 frames per second for frequent tools, 10 frames per second for rare tools 1/3 frames

RToolNet 5 frames per second, after removing 60% of frames without tools 5 videos
ZIB-Res-TS 6 frames per second, with labelset-based sampling (Sahu et al., 2017) 4 videos
MIL+resnet 15 frames per second 1/5 frames
CRACKER 15 frames per second 1/5 frames

SurgiToolNet 15 frames per second 2 videos

AUGSQZNT 10 frames per second 5 videos + selected frames
with rare tools in 3 videos

LCCV-Cataract 24 frames per second 1/5 frames
VGG fine-tuning 15 frames per second 5 videos

Table 2: Training data and validation selection in the competing solutions.
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Figure 4: Boxplots of AUC scores grouped per team or per tool. Each box is drawn around the region between the first and third quartiles, with a horizontal line
at the median value. Whiskers extend from the ends of each box to the most distant value which lies within 1.5 times the interquartile range. Black discs indicate
outliers.

than the first human grader (see Fig. 7 (c)). To evaluate the
cost of using automatic annotations rather than manual anno-
tations, we computed the relative specificity decrease at equal
sensitivity: results are reported in Table 8.

6. Discussion and Conclusions

We have presented the results of CATARACTS, the challenge
on automatic tool annotation for cataract surgery. Given the
high number of participants (14), we believe this challenge was
a success. It is a unique opportunity to learn lessons that will
guide the design of efficient surgery monitoring tools in the near
future.

First, lessons can be learnt from the challenges noted by par-
ticipants. All of them pointed out that the distribution of tools
is highly unequal (see Fig. 2) and that tools in the same cat-

egory are often visually similar to one another (cannulae, for-
ceps, etc.). These problems motivated the use of data resam-
pling strategies, to deal with class imbalance, and the design
of adequate cost functions. It was also noted that video tear-
ing artifacts appear at regular time intervals in videos. This
problem motivated the use of time filtering techniques. Other
properties of cataract surgery videos would probably have been
listed as challenges in the pre-deep learning era: uneven illu-
mination, zoom level variations, partial tool occlusion (only the
tool tip is visible), and motion and out-of-focus blur. How-
ever, none of them were noted by participants: these problems
are indeed handled well by CNNs coupled with adequate data
augmentation strategies. On the other hand, other specificities
of the CATARACTS dataset were exploited by participants to
their advantage. First, tool usage generally does not change be-
tween consecutive frames. This factor also motivated the use
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(a) phacoemulsifier handpiece
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(b) biomarker
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(c) Charleux cannula

Figure 5: Receiver-operating characteristic (ROC) curves. To save space, ROC curves are reported for three tools only: one frequent and well-detected tool (the
phacoemulsifier handpiece) and two challenging tools (the biomarker and the Charleux cannula). Detecting the biomarker is challenging because there are few
training samples. Detecting the Charleux cannula is challenging because this tool resembles the Rycroft cannula (in terms of shape and function).
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AUGSQZNT X X

LCCV-Cataract
VGG fine-tuning

Table 3: Geometrical data augmentation in the competing solutions

of time filtering techniques. Second, tool usage usually follows
precedence rules (e.g. phacoemulsification precedes implant in-
jection) and the rarest tools are generally used in pairs to man-
age special events: bleeding (the suture needle and the needle
holder), asymmetrical implant management (the biomarker and
the Mendez ring), etc. These specificities motivated the use of
(ad-hoc or general-purpose) temporal sequencers. However, the
use of these temporal sequencers was to be used with caution,
due to one specific challenge: tools in the same category are
sometimes interchangeable. In particular, all forceps may be
used to hold the suture needle, not only the ‘needle holder’. In
fact, one of the team that used recurrent neural networks (TRO-
LIS) noted a performance increase after removing it.

The above-mentioned properties of the dataset and of the task

at hand guided the design of the proposed solutions. Overall,
most teams took the following steps to train their solutions: 1)
selecting training frames in training videos, 2) downsampling
these frames, 3) performing data augmentation, 4) selecting
one or several CNNs pre-trained on ImageNet, 5) fine-tuning
these CNNs on the selected video frames, through the mini-
mization of a multi-label cost function, 6) optionally training
a multi-CNN aggregation function and 7) optionally training a
temporal sequencer. Selecting training frames (i.e. ignoring
available training samples) and yet performing data augmenta-
tion (i.e. generating new training samples) may seem counter-
intuitive. However, in many solutions, the decision to discard
training frames was motivated by the need to balance classes.
As for the general inference strategy, it can be summarized as
follows: 1) resizing each test frame, 2) optionally performing
data augmentation, 3) processing the resized frame with each
CNN, 4) optionally aggregating the CNN predictions and 5)
optionally running a temporal filter and/or sequencer. In other
words, most participants followed the state-of-the-art approach
for multi-label video sequencing using deep learning. It should
be noted that no team designed a problem-specific CNN: all so-
lutions relied on CNNs from the literature, with modifications
in the final layers only. Beyond these general points, several
lessons can be learnt by analyzing the differences between so-
lutions. First, the following factors seem to positively impact
the team ranking:

1. keeping full videos aside for validation, as illustrated in
Table 2,

2. using data augmentation techniques, as illustrated in Table
3,

3. using the latest generation of CNNs, in particular their
deepest versions, as illustrated in Table 4,

4. using multiple CNNs and/or RNNs, as illustrated in Table
4,

5. using temporal smoothing techniques, as illustrated in Ta-
ble 5 and Fig. 6.
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image size pre-training

DResSys 1 1 2 540×960 (× 2), 270×480, 337×600 ImageNet
LaTIM 1 331×331 ImageNet
CUMV 1 1 224×224 ImageNet

TROLIS 4 256×256 (× 3), 512×512 ImageNet
CatResNet 1 224×224 ImageNet

TUMCTNet 3 640×360 (× 3) ImageNet
CDenseNet 1 540×960 no

RToolNet 1 540×960 ImageNet
ZIB-Res-TS 1 480×270 ImageNet
MIL+resnet 1 1 256×256 (early training stages: 128×128) ImageNet
CRACKER 1 128×128 ImageNet

SurgiToolNet 1 224×224 ImageNet
AUGSQZNT 1 360×640 ImageNet

LCCV-Cataract 1 299×299 ImageNet
VGG fine-tuning 1 288×288 ImageNet

Table 4: Convolutional neural networks used in the competing solutions

team test data augmentation temporal smoothing
DResSys Markov random field

LaTIM LSTM (× 3), median filter
CUMV

TROLIS average filter
CatResNet

TUMCTNet center cropping weighted average filter
CDenseNet average filter

RToolNet
ZIB-Res-TS linear smoothing

(Sahu et al., 2017)
MIL+resnet rolling trimmed mean
CRACKER 4 versions of frame median filter, zeroing

of impossible predictions
SurgiToolNet
AUGSQZNT 5 crops of frame

LCCV-Cataract
VGG fine-tuning

Table 5: Post-processing techniques in the competing solutions

In fact, the winning team (DResSys) combined these five fac-
tors. The third lesson seems particularly important: solu-
tions based on the recent NASNet-A architecture achieved top-
ranking performance. On the other hand, the following factors
do not seem to influence the team ranking: the number of se-
lected training frames (see Table 2), the type of data augmen-
tation (random cropping versus random affine transformations
— see Table 3), the CNN’s input image size (the CNN’s default
input size versus a larger size — see Table 4) or the use of test-
time data augmentation (see Table 5). We observed that most
methodological variations investigated by a single team were
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DResSys X
LaTIM X X
CUMV

TROLIS X X
CatResNet

TUMCTNet X X
CDenseNet X X

RToolNet X
ZIB-Res-TS X X X
MIL+resnet X
CRACKER X

SurgiToolNet
AUGSQZNT X

LCCV-Cataract X
VGG fine-tuning X

Table 6: Strategies for class imbalance in the competing solutions

unsuccessful. Modeling the tool annotation task as a multi-class
classification problem (LCCV-Cataract), rather than a multi-
label one, was inefficient when more than two tools are used
at the same time, which occurs frequently (see Fig. 2). Thresh-
olding predictions as a post-processing step (SurgiToolNet), al-
though important for use in production, decreased the solution’s
merit, evaluated by the area under the ROC curve (see Fig. 5
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rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14
biomarker 0.9988 0.9847 0.9857 0.9026 0.9752 0.8511 0.9825 0.5797 0.9212 0.8018 0.8114 0.8690 0.9701 0.6983 0.5590

Charleux cannula 0.9892 0.9836 0.9735 0.9448 0.9490 0.8366 0.8603 0.8771 0.7846 0.8166 0.7814 0.7257 0.6867 0.6724 0.5359
hydrodissection cannula 0.9959 0.9873 0.9847 0.9840 0.9811 0.9570 0.9754 0.9717 0.9842 0.9704 0.9679 0.9091 0.9422 0.8743 0.9524

Rycroft cannula 0.9980 0.9946 0.9951 0.9924 0.9810 0.9907 0.9891 0.9908 0.9956 0.9791 0.9682 0.9709 0.9432 0.8391 0.6078
viscoelastic cannula 0.9865 0.9822 0.9776 0.9822 0.9423 0.9732 0.9349 0.9545 0.9506 0.9253 0.9120 0.9533 0.8248 0.7353 0.8588

cotton 0.9999 0.9986 0.9890 0.9842 0.9816 0.9854 0.9503 0.9759 0.9821 0.9702 0.9869 0.7213 0.9220 0.8893 0.7044
capsulorhexis cystotome 0.9999 0.9998 0.9987 0.9989 0.9976 0.9968 0.9966 0.9976 0.9933 0.9953 0.9911 0.9450 0.9832 0.9151 0.9609

Bonn forceps 0.9972 0.9949 0.9893 0.9942 0.9852 0.9825 0.9454 0.9726 0.9794 0.9574 0.9529 0.8934 0.9300 0.8188 0.8234
capsulorhexis forceps 0.9993 0.9981 0.9890 0.9845 0.9821 0.9879 0.9700 0.9888 0.9869 0.9759 0.9761 0.9779 0.9486 0.8774 0.8399

Troutman forceps 0.9898 0.9974 0.9917 0.9689 0.9752 0.9803 0.9237 0.9656 0.9827 0.9108 0.9020 0.9017 0.8744 0.7963 0.4826
needle holder 0.9945 0.9936 0.9846 0.9839 0.9500 0.9415 0.8859 0.9709 0.9395 0.8893 0.8853 0.9909 0.8990 0.6011 0.4929

irrigation/aspiration handpiece 0.9988 0.9989 0.9977 0.9976 0.9950 0.9947 0.9926 0.9913 0.9968 0.9925 0.9915 0.9279 0.9745 0.9019 0.9486
phacoemulsifier handpiece 0.9998 0.9998 0.9990 0.9993 0.9966 0.9969 0.9963 0.9971 0.9994 0.9966 0.9927 0.9526 0.9854 0.9006 0.9712

vitrectomy handpiece 0.9993 0.9719 0.9943 0.9960 0.9852 0.9924 0.9550 0.9932 0.9726 0.9778 0.9804 0.9958 0.8552 0.9244 0.1725
implant injector 0.9984 0.9939 0.9906 0.9935 0.9828 0.9852 0.9326 0.9644 0.9739 0.9486 0.9590 0.9172 0.9354 0.9108 0.8384

primary incision knife 0.9999 0.9965 0.9972 0.9933 0.9858 0.9961 0.9779 0.9848 0.9939 0.9801 0.9824 0.9674 0.9471 0.9195 0.8060
secondary incision knife 0.9997 0.9994 0.9995 0.9984 0.9984 0.9983 0.9911 0.9978 0.9995 0.9936 0.9889 0.9458 0.9632 0.9251 0.8917

micromanipulator 0.9989 0.9978 0.9940 0.9980 0.9897 0.9967 0.9886 0.9912 0.9917 0.9784 0.9710 0.9923 0.9815 0.6452 0.8706
suture needle 0.9987 0.9990 0.9861 0.9915 0.9320 0.9920 0.9420 0.9796 0.9920 0.9295 0.9284 0.7543 0.9383 0.7301 0.5810
Mendez ring 1.0000 0.9980 0.9999 0.9994 0.9966 0.9959 0.9629 0.9814 0.6317 0.9979 0.9986 0.9999 0.7952 0.9886 0.5064

Vannas scissors 0.9972 0.9842 0.9657 0.9182 0.9533 0.9705 0.9625 0.9673 0.9855 0.9893 0.9876 0.9925 0.6841 0.7579 0.4246
score (average AUC) 0.9971 0.9931 0.9897 0.9812 0.9769 0.9715 0.9579 0.9568 0.9541 0.9513 0.9484 0.9192 0.9040 0.8248 0.7061

lower bound of CI 0.9962 0.9923 0.9871 0.9737 0.9739 0.9653 0.9515 0.9481 0.9489 0.9433 0.9419 0.9004 0.8938 0.8123 0.6953
upper bound of CI 0.9981 0.9938 0.9916 0.9887 0.9799 0.9777 0.9643 0.9656 0.9592 0.9592 0.9549 0.9381 0.9142 0.8374 0.7169

better than the next ranked? yes yes yes no yes yes no no no no yes no yes yes n/a

Table 7: Areas under the ROC curve (AUCs) for the retained solution of each team. To compare consecutive solutions in the ranking, 95% confidence intervals
(CIs) on the average AUCs are included. CNN ensemble methods are indicated by an asterisk.

reference expert 1 expert 2
DResSys 2.93 ± 0.84 1.91 ± 0.72

LaTIM 8.37 ± 2.33 5.58 ± 2.05
CUMV 13.52 ± 2.91 7.53 ± 2.18

TROLIS 19.02 ± 3.84 7.10 ± 2.09
CatResNet 24.74 ± 3.71 13.24 ± 2.81

TUMCTNet 26.15 ± 5.36 16.24 ± 5.32
CDenseNet 41.06 ± 5.55 22.78 ± 5.41

RToolNet 43.61 ± 7.02 26.39 ± 6.66
ZIB-Res-TS 27.97 ± 5.16 18.55 ± 5.08
MIL+resnet 41.36 ± 5.44 24.94 ± 5.25
CRACKER 34.31 ± 4.63 21.88 ± 4.45

SurgiToolNet 67.95 ± 6.95 40.59 ± 9.16
AUGSQZNT 66.13 ± 5.83 42.25 ± 7.61

LCCV-Cataract 68.91 ± 5.38 50.86 ± 5.44
VGG fine-tuning 70.00 ± 3.36 59.51 ± 4.08

Table 8: Relative specificity decrease, compared to the expert, at the same sen-
sitivity. The relative specificity decrease is computed for all 21 tools and the
average (± the standard error) is reported.

and 7). The use of a very simple classifier for rare but distinct
tools like the biomarker (TROLIS) led to a very specific clas-
sifier (see Fig. 5 (b) and 6 (d)). However, like in the previous
example, the use of binary predictions negatively impacted the
score. Finally, we note that the most sophisticated solutions
(MIL+resnet for instance) did not necessarily rank high, unless
the general training procedure and the five success rules men-
tioned above were followed (like DResSys).

Compared to most medical image analysis challenges, one of
CATARACTS’ novelties was to offer participants the ability to
submit multiple solutions over a long period of time (8 months).
About half of the teams took advantage of this possibility dur-
ing the last three months of that period (see Fig. 3). Several
types of improvements were evaluated: improving data aug-
mentation (tested by TUMCTNet between submissions 1 and
2 — noted “TUMCTNet 1 → 2”), selecting training images
differently (DResSys 1 → 2, TROLIS 1 → 2, TUMCTNet
4 → 5 and MIL+resnet 1 → 2), replacing one CNN with an-
other (LaTIM 1 → 2 and TUMCTNet 1 → 2), adding one or
several CNNs (DResSys 2 → 3 & 3 → 4, TROLIS 1 → 2
and TUMCTNet 2 → 3 & 3 → 4 & 5 → 6), changing the
input size of CNNs (TUMCTNet 4 → 5), redefining training
images (DResSys 1 → 2, TROLIS 1 → 2, TUMCTNet 4 → 5
and MIL+resnet 1→ 2), redefining the loss function (DResSys
3 → 4, TUMCTNet 3 → 4, RToolNet 1 → 2, LCCV-Cataract
1→ 2), adding a temporal sequencer (DResSys 1→ 2, CatRes-
Net 1 → 2, TUMCTNet 2 → 3 and MIL+resnet 1 → 2)
and replacing this temporal sequencer with another (DResSys
2 → 3). The timeline in Fig. 3 reveals that consecutive sub-
missions almost always led to a performance increase; the only
exception was the last submission from the TUMCTNet team,
although the decrease was minor. Increasing performance over
time can be explained by the fact that participants progressively
increased the complexity of their solution. It also indicates that
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(a) micromanipulator
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(b) Rycroft cannula
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(c) secondary incision knife
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(d) biomarker

Figure 6: Typical examples of temporal prediction signals. Predictions for the micromanipulator, the Rycroft cannula and the secondary incision knife are from a
typical surgery (test video 6). Predictions for the biomarker are from a more complex surgery (test video 13).

participants progressively gained experience manipulating the
training set and reading other teams’ reports. On the down
side, allowing multiple submissions introduced one unforeseen
training bias: a few teams redefined their validation subset af-
ter detailed performance scores in the test set (per-tool AUC)
revealed that some of the surgical tools did not appear in their
training subset. On one hand, it helped correcting a careless
mistake that could have been avoided by frequency counting in

the training set. On the other hand, it can be regarded as train-
ing on the test set. These submissions were accepted anyway
as they also included methodological novelties. As noted by
other challenge organizers, challenge design is a delicate task
(Maier-Hein et al., 2018).

This benchmarking study has one major limitation: solutions
were only compared in terms of classification performance,
while other aspects are also important. For instance, the ability
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(b) Grader 1 - Troutman forceps
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(d) Grader 2 - Troutman forceps

Figure 7: Receiver-operating characteristic (ROC) curves using the annotations of a single human grader, before adjudication, as reference standard. To save space,
ROC curves are reported for two tools only. The sensitivity/specificity pair of the other expert is indicated by a red cross.

to analyze tool usage in real-time is of particular interest for the
design of intraoperative decision support tools. Some partici-
pants (the AUGSQZNT team in particular) decided to design
a lightweight solution that would run in real-time with limited
hardware, which explains in part a lower ranking compared to
those whose did not have that goal in mind. Given the setup
of the challenge, it was not possible to compare computation
times under identical conditions, so we did not analyze compu-
tational aspects in depth. A few lessons can be learnt anyway.
First, computation times reported by most participants indicate
that their solution can process several frames per seconds using
one GPU, which would be enough in many applications. Sec-
ond, it should be noted that most solutions allow online video
analysis, in the sense that they don’t need future information
for inference. Of course, solutions relying on a symmetrical
time filter (see Table 5) would infer predictions with a delay
equal to the filter radius. However, this delay is usually less
than a second, which would also be acceptable in many appli-
cations. Another aspect that would need further analysis is the
independence on the acquisition hardware: to assess the gener-
ality of the proposed solutions, it would be useful to evaluate
them on new datasets acquired with different microscopes, dif-

ferent cameras and/or different recorders.

As a final remark, we note that the classification performance
of the proposed solutions is lower than that of a human expert
(see Fig. 7). However, the performance of top-ranking solu-
tions is very close (see Table 8). Given the limited performance
decrease, an automated solution would clearly be a better op-
tion, especially in the context of intraoperative decision sup-
port: assuming a human interpreter can annotate tool usage in
real time, he or she would have to dedicate one hundred percent
of his or her time to that task, which would be prohibitive in the
long term. Besides, we expect the performance of automated
solutions to improve further should contextual information be
available. In particular, additional video streams recording the
surgical tray or the operating room in general could be consid-
ered. In conclusion, the CATARACTS challenge has demon-
strated that the task of automated tool annotation in cataract
surgery videos has virtually been solved, which paves the way
for the introduction of innovative decision support technologies
in the operating room, with benefits for both surgeons and pa-
tients.
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Córdova, H., Sánchez-Montes, C., Gurudu, S. R., Fernández-Esparrach, G.,
Dray, X., Liang, J., Histace, A., Jun. 2017. Comparative validation of polyp
detection methods in video colonoscopy: Results from the MICCAI 2015
endoscopic vision challenge. IEEE Trans Med Imaging 36 (6), 1231–1249.
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