MOTIVATION

- Binary latent variable models have applications in topic modeling, semi-supervised learning, reinforcement learning
- Boltzmann machine as powerful distributions on binary vars.
- Variational autoencoders with Boltzmann priors:

 $\log p(x) \geq \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - \mathsf{KL} \left(q(z|x) || p(z) \right)$

- Reparameterization doesn't work for binary variables
- Continuous relaxation of binary random:

We propose continuous relaxations for Boltzmann priors

OVERLAPPING TRANSFORMATIONS

Use a mixture of two overlapping transformations:

Inverse CDF of $q(\zeta)$ has a closed form for mixture of exponential and mixture of logistic distributions

 $\mathcal{L}(x) = \mathbb{E}_{q(\zeta|x)}[\log p(x|\zeta)] - \mathsf{KL}(q(z,\zeta|x)||p(z,\zeta))$ $= \mathbb{E}_{q(\zeta|x)}[\log p(x|\zeta)] + H(q(z|x)) - \mathbb{E}_{q(\zeta|x)}[H(q(z|x,\zeta)||p(z))]$

2018 Conference on Neural Information Processing Systems (NeurIPS)

DVAE#: Discrete Variational Autoencoders with **Relaxed Boltzmann Priors**

Arash Vahdat*, Evgeny Andriyash*, and William G. Macready

UNDIRECTED PRIOR – IW BOUND

$$p(z) = \frac{1}{Z} e^{a^T z + \frac{1}{2} z^T W z} \qquad (z)$$

$$q(z|x) = \prod_i q_i(z_i|x) \qquad (x)$$

$$\log p(x) \geq \mathcal{L}_{\mathcal{K}}(x) = \mathbb{E}_{\zeta^{(k)} \sim q(\zeta|x)} \left[\log \left(\frac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} \frac{p(\zeta^{(k)}) p(x|\zeta^{(k)})}{q(\zeta^{(k)}|x)} \right) \right] \geq \mathcal{L}_{1}(x)$$

OVERLAPPING RELAXATIONS

Factorial overlapping transformation

Overlapping relaxation of Boltzmann machines:

$$p(\zeta) = \sum_{z} p(z, \zeta) = \sum_{z} p(z)r(z)$$
$$\log p(\zeta) = \log \left(\sum_{z} p(z)r(\zeta|z)\right) = \log \left(\sum_{z} e^{-E}\right)$$

A mean-field distribution approximates the value and gradient of the first term

GAUSSIAN INTEGRAL RELAXATION

- The Gaussian integral trick:
- The pairwise terms on *z* are removed in the joint:

$$p(z,\zeta) \propto e^{-rac{1}{2}\zeta^T (W+eta I)\zeta+z^T (W+eta I)\zeta+(a-rac{1}{2}eta \mathbf{1})^T z}$$

 $p(\zeta)$

 ζ_1

- z is marginalized out easily
- Example:

				C	วลเ
Z ₁	Z ₂	p(z)		2	
0	0	0.00	_	1 -	(
0	1	0.45	ζ_2		(
1	0	0.45		0 -	
1	1	0.10			

)
$$p(\zeta) = ?$$

$$q(\zeta|x) = \prod_i q_i(\zeta_i|x)$$

$$r(\zeta|z) = \prod_i r(\zeta_i|z_i)$$

 $(\zeta|z)$

 $E_{\theta}(z)+b(\zeta)^{T}z+C(\zeta)$ $-\log Z_{\theta}$

 $r(\zeta|z) = \mathcal{N}(\zeta|z, (W + \beta I)^{-1})$

 $p(\zeta)$ **Overlapping Relaxation** ussian Integral

GENERALIZED OVERLAPPING TRANSFORMATIONS

Reparameterized sampling from $q(\zeta|x)$ required computing inverse CDF in DVAE++

$$q(\zeta|x) = (1-q)r$$

 $CDF_{q(\zeta|x)}(\zeta) = (1-q)R$

- Use implicit differentiation for the gradient of ζ w.r.t q Extend $r(\zeta | x)$ to Normal and power-function dist.

		Varia	ational Bo	ound	Importance Weighted Bound				
		DVAE	DVAE++		DVAE#				
OMNIGLOT MNIST	Κ	Spike-	Exp	Power	Guass.	Gauss.	Ехр	Unifor-	Power
		Exp			Int.			Exp	
	1	83.97	84.15	83.62	84.30	84.35	83.96	83.54	83.37
	5	83.74	84.85	83.57	83.68	83.61	83.70	83.33	82.99
	25	84.19	85.49	83.58	83.39	83.26	83.76	83.30	82.85
	1	103.10	101.34	100.42	102.07	102.84	100.38	99.84	99.75
	5	100.88	100.55	99.51	100.85	101.43	99.93	99.57	99.24
	25	100.55	100.31	99.49	100.20	100.45	100.10	99.59	98.93
•									

Copyright © Quadrant, D-Wave Systems Inc. http://quadrant.ai arash@quadrant.ai

EXPERIMENTS

Negative log-likelihood, lower is better

Code available at: github.com/QuadrantAl/dvae

> **QuPA Sampling Library:** try.quadrant.ai/qupa